Jacobi's theta function #
This file defines the Jacobi theta function
$$\theta(\tau) = \sum_{n \in \mathbb{Z}} \exp (i \pi n ^ 2 \tau),$$
and proves the modular transformation properties θ (τ + 2) = θ τ
and
θ (-1 / τ) = (-I * τ) ^ (1 / 2) * θ τ
, using Poisson's summation formula for the latter.
theorem
jacobi_theta_T_sq_smul
(τ : upper_half_plane) :
jacobi_theta (modular_group.T ^ 2 • τ) = jacobi_theta τ
theorem
jacobi_theta_S_smul
(τ : upper_half_plane) :
jacobi_theta (modular_group.S • τ) = (-complex.I * ↑τ) ^ (1 / 2) * jacobi_theta τ