mathlib documentation

number_theory.modular_forms.jacobi_theta

Jacobi's theta function #

This file defines the Jacobi theta function

$$\theta(\tau) = \sum_{n \in \mathbb{Z}} \exp (i \pi n ^ 2 \tau),$$

and proves the modular transformation properties θ (τ + 2) = θ τ and θ (-1 / τ) = (-I * τ) ^ (1 / 2) * θ τ, using Poisson's summation formula for the latter.

noncomputable def jacobi_theta (τ : upper_half_plane) :

Jacobi's theta function ∑' (n : ℤ), exp (π * I * n ^ 2 * τ).

Equations
theorem jacobi_theta_unif_summable {R : } (hR : 0 < R) :