
Lean 4 tactic cheatsheet
Last updated: January 27, 2025

If a tactic is not recognized, write import Mathlib.Tactic at the top of your file.

Logical symbol Appears in goal Appears in hypothesis

∀ (for all) intro x apply h or specialize h x

→ (implies) intro h apply h or specialize h1 h2

¬ (not) intro h apply h or contradiction
↔ (if and only if) constructor rw [h] or rw [← h] or apply h.1 or apply h.2

∧ (and) constructor obtain 〈h1, h2〉 := h

∃ (there exists) use x obtain 〈x, hx〉 := h

∨ (or) left or right obtain h1|h2 := h

a = b (equality) rfl or ext rw [h] or rw [← h]

True trivial —
False — contradiction

Tactic Effect

Applying Lemmas
exact expr prove the current goal exactly by expr .
apply expr prove the current goal by applying expr to some arguments.
refine expr like exact, but expr can contain ?_ that will be turned into a new goal.
convert expr prove the goal by showing that it is equal to the type of expr .

Context manipulation
have h : prop := expr add a new hypothesis h of type prop. Do not use for data!
have h : prop := by tac add hypothesis h after proving it using tactics. Do not use for data!
set x : type := expr add an abbreviation x with value expr .
clear h remove hypothesis h from the context.
rename_i x h rename the last inaccessible names with the given names.
show expr replaces the goal by expr , if they are equal by definition.
generalize_proofs add all proofs occurring in the goal to the local context.

Rewriting and simplifying
rw [expr] in the goal, replace (all occurrences of) the left-hand side of expr by its

right-hand side. expr must be an equality, iff statement or definition.
rw [←expr] . . . rewrites using expr from right-to-left.
rw [expr] at h . . . rewrite in hypothesis h.
nth_rw n [expr] rewrite only the n-th occurrence of the rewrite rule expr .
simp simplify the goal using all lemmas tagged @[simp] and basic reductions.
simp at h . . . simplify in hypothesis h.
simp [*, expr] . . . also simplify with all hypotheses and expr .
simp only [expr] . . . only simplify with expr and basic reductions (not with simp-lemmas).
simp? . . . let Lean speed up simp by specifying which lemmas were used.
simp_rw [expr1, . . .] like rw, but uses simp only at each step.
simp_all repeatedly simplify the goal and all hypothesis using all hypotheses.
norm_num simplify numerical expressions by calculating.
norm_cast simplify the expression by moving casts (↑) outwards.
push_cast push casts inwards.
conv => conv-tac apply rewrite rules to only part of the goal. Use congr, skip, ext,

lhs, rhs, . . . to navigate to the desired subexpression. See TPIL.
change expr change the current goal to expr , if they are equal by definition.

https://docs.lean-lang.org/theorem_proving_in_lean4/conv.html

split_ifs case split on every occurrence of if h then expr else expr in the goal.

Reasoning with equalities, inequalities, and other relations
calc a = b := by tac

_ ≤ c := by tac
_ < d := by tac

perform a calculation
 after writing “calc _” Lean can generate a basic calc-block for you.
 after a by shift-click on a subterm in the goal to create a new step.

rfl prove the current goal by reflexivity.
symm swap a symmetric relation.
trans expr split a transitive relation into two parts with expr in the middle.
subst h if h equates a variable with a value, substitute the value for the variable.
ext prove an equality in a specified type (e.g. functions).
apply_fun expr at h apply expr to both sides of the (in)equality h.
linear_combination prove an equality by specifying it as a linear combination of hypotheses.
congr prove an equality using congruence rules.
gcongr prove an inequality using congruence rules.
positivity prove goals of the form 0 < x, 0 ≤ x and x ̸= 0.
bound prove inequalities based on the expression structure.
omega solve linear arithmetic problems over N or Z.
linarith prove linear (in)equalities from the hypotheses.
nlinarith stronger variant of linarith that can solve some nonlinear inequalities.

Reasoning techniques
exfalso replace the current goal by False.
by_contra h proof by contradiction; adds the negation of the goal as hypothesis h.
push_neg or push_neg at h push negations into quantifiers and connectives in the goal (or in h).
by_cases h : prop case-split on prop.
induction n with
| zero => tac
| succ n ih => tac

prove a goal by induction on n.

 after writing “induction n” Lean can generate the cases for you.
choose f h using expr extract a function from a forall-exists statement expr .
lift n to type using h lifts a variable to type (e.g. N) using side-condition h.
zify / qify / rify shift an (in)equality to Z / Q / R.

Searching
exact? search for a single lemma that closes the goal using the current hypotheses.
apply? gives a list of lemmas that can apply to the current goal.
rw? gives a list of lemmas that can be used to rewrite the current goal.
have? using h1, h2 try to find facts that can be concluded by using both h1 and h2.
hint run a few common tactics on the goal, reporting which one succeeded.

General automation
ring / noncomm_ring / module
field_simp / abel / group

prove the goal by using the axioms of a commutative ring / ring / module
/ field / abelian group / group.

aesop simplify the goal, and use various techniques to prove the goal.
tauto prove logical tautologies.
decide run a decision procedure to prove the goal (if it is decidable).

Operations on goals/tactics
swap swap the first two goals.
pick_goal n move goal n to the front.
all_goals tac run tac to all goals.
try tac run tac only if it succeeds.
tac1; tac2 run tac1 and then tac2 (same as putting them on separate lines).
tac1 <;> tac2 run tac1 and then tac2 on all goals generated by tac1 .
sorry admit the current goal.

Domain-specific tactics
fin_cases h split a hypothesis h into finitely many cases.
interval_cases n if split the goal into cases for each of the possible values for n.
compute_degree prove (in)equalities about the degree of a polynomial
monicity prove that a polynomial is monic
fun_prop prove that a function satisfies a property (continuity, measurability, . . .).
measurability prove that a set or function is measurable.
filter_upwards [h1, h2] Show that an Eventually goal follows from the given hypotheses.
slice_lhs, slice_rhs Focus on a part of a composition in a category.

See the source code for some other category theory tactics.

Usage note
This is a quick overview of the most common tactics in Lean with only a short description. To learn more about
a tactic and to learn its precise syntax or variants, consult its docstring or use #help tactic tac.
This list is not complete, and various tactics are intentionally left out.

Some useful commands (Some of these also work as tactics)

#loogle query � use Loogle! to find declarations.
#leansearch "query." � use LeanSearch to find declarations.
#exit don’t compile code after this command.
#lint run linters to find common mistakes in the code above this command.
#where print current opened namespaces, universes, variables and options.
#min_imports print the minimal imports needed for what you’ve done so far.
#help tactic tac find information about tac.
#help category list all tactics/commands/attributes/options/notations.

Legend
 describes a code action for this tactic.
� requires internet access.

https://github.com/leanprover-community/mathlib4/tree/master/Mathlib/Tactic/CategoryTheory
https://loogle.lean-lang.org/
https://leansearch.net

