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Introduction

This project had two goals. First we wanted to check whether a proof assistant can do
differential topology. Many people still think that formal mathematics are mostly suitable
for algebra, combinatorics, or foundational studies. So we chose one of the most famous
examples of geometric topology theorems associated to tricky geometric intuition: the exis-
tence of sphere eversions. Note however that we won’t focus on any of the many videos of
explicit sphere eversions. We will prove a general theorem which immediately implies the
existence of sphere eversions.

The second goal of this project was to experiment using a formalization blueprint that
evolves with the project until we get a proof that has very closely related formal and informal
presentations. A full proof (by normal pen and paper standards) was written before the
formalization effort began. This proof evolved a lot during the formalization. In particular,
the chapter on the global theory required a lot of work during the formalization in order
to ensure that its technical lemmas are both fully correct and actually sufficient for our
purposes.

In this introduction, we will describe the mathematical context of this project, the main
definitions and statements, and outline the proof strategy.

Gromov observed that it’s often fruitful to distinguish two kinds of geometric construction
problems. He says that a geometric construction problem satisfies the ℎ-principle if the only
obstructions to the existence of a solution come from algebraic topology. In this case, the
construction is called flexible, otherwise it is called rigid. This definition is purposely vague.
We will see a rather general way to give it a precise meaning, but one must keep in mind that
such a precise meaning will fail to encompass a number of situations that can be illuminated
by the ℎ-principle dichotomy point of view.

The easiest example of a flexible construction problem which is not totally trivial and is
algebraically obstructed is the deformation of immersions of circles into planes. Let 𝑓0 and
𝑓1 be two maps from 𝕊1 to ℝ2 that are immersions. Since 𝕊1 has dimension one, this mean
that both derivatives 𝑓 ′

0 and 𝑓 ′
1 are nowhere vanishing maps from 𝕊1 to ℝ2. The geometric

object we want to construct is a (smooth) homotopy of immersions from 𝑓0 to 𝑓1, ie a smooth
map 𝐹 ∶ 𝕊1 × [0, 1] → ℝ2 such that 𝐹|𝕊1×{0} = 𝑓0, 𝐹|𝕊1×{1} = 𝑓1, and each 𝑓𝑝 ∶= 𝐹 |𝕊1×{𝑝} is
an immersion. If such a homotopy exists then, (𝑡, 𝑝) ↦ 𝑓 ′

𝑝(𝑡) is a homotopy from 𝑓 ′
0 to 𝑓 ′

1
among maps from 𝕊1 to ℝ2 ∖ {0}. Such maps have a well defined winding number 𝑤(𝑓 ′

𝑖 ) ∈ ℤ
around the origin, the degree of the normalized map 𝑓 ′

𝑖 /‖𝑓 ′
𝑖 ‖ ∶ 𝕊1 → 𝕊1. So 𝑤(𝑓 ′

0) = 𝑤(𝑓 ′
1)

is a necessary condition for the existence of 𝐹 , which comes from algebraic topology. The
Whitney–Graustein theorem states that this necessary condition is also sufficient. Hence
this geometric construction problem is flexible. One can give a direct proof of this result,
but it also follows from general results proved in this project (although we haven’t formalized
this consequence of our work).

An important lesson from the above example is that algebraic topology can give us more
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than a necessary condition. Indeed the (one-dimensional) Hopf degree theorem ensures that,
provided 𝑤(𝑓 ′

0) = 𝑤(𝑓 ′
1), there exists a homotopy 𝑔𝑝 of nowhere vanishing maps relating 𝑓 ′

0
and 𝑓 ′

1. We also know from the topology of ℝ2 that 𝑓0 and 𝑓1 are homotopic, say using the
straight-line homotopy 𝑝 ↦ 𝑓𝑝 = (1 − 𝑝)𝑓0 + 𝑝𝑓0. But there is no a priori relation between
𝑔𝑝 and the derivative of 𝑓𝑝 for 𝑝 ∉ {0, 1}. So we can restate the crucial part of the Whitney–
Graustein theorem as: there is a homotopy of immersion from 𝑓0 to 𝑓1 as soon as there is
(a homotopy from 𝑓0 to 𝑓1) and a homotopy from 𝑓 ′

0 to 𝑓 ′
1 among nowhere vanishing maps.

The parenthesis in the previous sentence indicated that this condition is always satisfied,
but it is important to keep in mind for generalizations. Gromov says that such a homotopy
of uncoupled pairs (𝑓, 𝑔) is a formal solution of the original problem.

One can generalize this discussion of uncoupled maps replacing a map and its derivative
for maps from a manifold 𝑀 to a manifold 𝑁 . The so called 1-jet space 𝐽1(𝑀, 𝑁) is the space
of triples (𝑚, 𝑛, 𝜑) with 𝑚 ∈ 𝑀 , 𝑛 ∈ 𝑁 , and 𝜑 ∈ Hom(𝑇𝑚𝑀, 𝑇𝑛𝑁), the space of linear maps
from 𝑇𝑚𝑀 to 𝑇𝑛𝑁 . One can define a smooth manifold structure on 𝐽1(𝑀, 𝑁), of dimension
dim(𝑀)+dim(𝑁)+dim(𝑀) dim(𝑁) which fibers over 𝑀 , 𝑁 and their product 𝐽0(𝑀, 𝑁) ∶=
𝑀 × 𝑁 . Beware that the notation (𝑚, 𝑛, 𝜑) does not mean that 𝐽1(𝑀, 𝑁) is a product of
three manifolds, the space where 𝜑 lives depends on 𝑚 and 𝑛. Any smooth map 𝑓 ∶ 𝑀 → 𝑁
gives rise to a section 𝑗1𝑓 of 𝐽1(𝑀, 𝑁) → 𝑀 defined by 𝑗1𝑓(𝑚) = (𝑚, 𝑓(𝑚), 𝑇𝑚𝑓). Such a
section is called a holonomic section of 𝐽1(𝑀, 𝑁). In the Whitney–Graustein example, we
use the canonical trivialization of 𝑇 𝕊1 and 𝑇 ℝ2 to represent 𝑗1𝑓 has a pair of maps (𝑓, 𝑓 ′).
The role played by (𝑓, 𝑔) in this example is played in general by sections of 𝐽1(𝑀, 𝑁) → 𝑀
which are not necessarily holonomic.

One can generalize this discussion to 𝐽𝑟(𝑀, 𝑁) which remembers derivatives of maps up
to order 𝑟 for some given 𝑟 ≥ 0. One can also consider sections of an arbitrary bundle 𝐸 → 𝑀
instead of functions from 𝑀 to 𝑁 , which are sections of the trivial bundle 𝑀 × 𝑁 → 𝑁 .
But the case of 𝐽1(𝑀, 𝑁) is sufficient for our purposes.

Definition. A first order differential relation ℛ for maps from 𝑀 to 𝑁 is a subset of
𝐽1(𝑀, 𝑁). A solution of ℛ is a function 𝑓 ∶ 𝑀 → 𝑁 such that 𝑗1𝑓(𝑚) is in ℛ for all 𝑚. A
formal solution of ℛ is a non-necessarily holonomic section of 𝐽1(𝑀, 𝑁) → 𝑀 which takes
value in ℛ.

The partial differential relation ℛ satisfies the ℎ-principle if any formal solution 𝜎 of ℛ
is homotopic, among formal solutions, to some holonomic one 𝑗1𝑓.

For instance, an immersion of 𝑀 into 𝑁 is a solution of

ℛ = {(𝑚, 𝑛, 𝜑) ∈ 𝐽1(𝑀, 𝑁) | 𝜑 is injective}.
As we saw with the Whitney–Graustein problem, we are not only interested to individual
solutions, but also in families of solutions. In differential topology, a smooth family of maps
between manifolds 𝑋 and 𝑌 is a smooth map ℎ∶ 𝑃 × 𝑋 → 𝑌 seen as the collection of maps
ℎ𝑝 ∶ 𝑥 ↦ ℎ(𝑝, 𝑥). Here 𝑃 stands for “parameter space”. A smooth family of sections of
𝐸 → 𝑋 is a smooth family of maps 𝜎 ∶ 𝑃 × 𝑋 → 𝐸 such that each 𝜎𝑝 is a section.

In such a case it is important that we start with a family of formal solutions that is
holonomic for some values of the parameter and we don’t modify it for those parameters.
In the curve example 𝑃 = [0, 1], the formal solution is holonomic for parameters 0 and 1,
and we want to keep the start and end curves. In this work we don’t use manifolds with
boundary when it is not necessary so we rather use ℝ as a parameter space.

More generally it can also happen that a family of formal solutions 𝜎 ∶ 𝑃 ×𝑀 → 𝐽1(𝑀, 𝑁)
has the property that 𝜎𝑝 is holonomic at 𝑚 ∈ 𝑀 for some values of 𝑝 and 𝑚 and we want
to preserve 𝜎 near the corresponding set in 𝑃 × 𝑀 . This leads to the following definition.
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Definition. A partial differential relation ℛ ⊂ 𝐽1(𝑀, 𝑁) satisfies the relative and paramet-
ric ℎ-principle if every family of formal solutions 𝜎 ∶ 𝑀×𝑃 → 𝐽1(𝑀, 𝑁) which are holonomic
for (𝑝, 𝑚) near some closed set 𝐶 ⊂ 𝑃 × 𝑀 , is homotopic to a family of holonomic sections,
and this homotopy can be chosen constant near 𝐶.

One can also insist on the deformed solution to be 𝐶0-close to the original one. In this
case one talks about a 𝐶0-dense ℎ-principle.

Using this vocabulary, we can state the Smale-Hirsch immersion theorem as saying that
the relation of immersions satisfies all forms of the ℎ-principle provided the dimension of
the target manifold is larger than the dimension of the source.

This theorem covers the Whitney–Graustein theorem (in its second form, assuming the
existence of a homotopy between derivatives). But there are much less intuitive applications.
The most famous one is the existence of sphere eversions: one can “turn 𝕊2 inside-out among
immersions of 𝕊2 into ℝ3).

Corollary (Smale 1958). There is a homotopy of immersion of 𝕊2 into ℝ3 from the inclusion
map to the antipodal map 𝑎∶ 𝑞 ↦ −𝑞.

The reason why this is turning the sphere inside-out is that 𝑎 extends as a map from
ℝ3 ∖ {0} → ℝ3 ∖ {0} by

̂𝑎 ∶ 𝑞 ↦ − 1
‖𝑞‖2 𝑞

which exchanges the interior and exterior of 𝕊2. More abstractly, one can say the normal
bundle of 𝕊2 is trivial, hence one can extend 𝑎 to a tubular neighborhood of 𝕊2 as an
orientation preserving map. Since 𝑎 is orientation reversing, any such extension will be
reversing co-orientation.

Proof of the sphere eversion corollary. We denote by 𝜄 the inclusion of 𝕊2 into ℝ3. We set
𝑗𝑡 = (1 − 𝑡)𝜄 + 𝑡𝑎. This is a homotopy from 𝜄 to 𝑎 (but not an immersion for 𝑡 = 1/2).
We need to check there is no obstruction to building a homotopy of formal solutions above
those maps. One could show that the relevant homotopy group (replacing 𝜋1(𝕊1) from
the Whitney–Graustein example) is 𝜋2(SO3(ℝ)). This group is trivial, hence there is no
obstruction. But actually we can write an explicit homotopy here, without computing
𝜋2(SO3(ℝ)). Using the canonical trivialization of the tangent bundle of ℝ3, we can set, for
(𝑞, 𝑣) ∈ 𝑇 𝕊2, 𝐺𝑡(𝑞, 𝑣) = Rot𝜋𝑡

𝑂𝑞(𝑣), the rotation around axis 𝑂𝑞 with angle 𝜋𝑡. The family
𝜎 ∶ 𝑡 ↦ (𝑗𝑡, 𝐺𝑡) is a homotopy of formal immersions relating 𝑗1𝜄 to 𝑗1𝑎. The above theorem
ensures this family is homotopic, relative to 𝑡 = 0 and 𝑡 = 1, to a family of holonomic formal
immersions, ie a family 𝑡 ↦ 𝑗1𝑓𝑡 with 𝑓0 = 𝜄, 𝑓1 = 𝑎, and each 𝑓𝑡 is an immersion.

The Smale-Hirsch theorem and its above corollary follows from a more general theorem:
the ℎ-principle for open and ample first order differential relations (see below). We will prove
this theorem using a technique which is even more general: convex integration. For instance
this technique also underlies the constructions of paradoxical isometric embeddings, which
could be a nice follow-up project.

We’ll end this introduction by describing the key construction of convex integration,
since it is very nice and elementary. Convex integration was invented by Gromov around
1970, inspired in particular by the 𝐶1 isometric embedding work of Nash and the original
proof of flexibility of immersions. This term is pretty vague however, and there are several
different implementations. The newest one, and by far the most efficient one, is Mélanie
Theillière’s corrugation process from 2018. And this is what we will use.
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Let 𝑓 be a map from ℝ𝑛 to ℝ𝑚. Say we want to turn 𝑓 into a solution of some partial
differential relation. For instance if we are interested in immersions, we want to make sure
its differential is everywhere injective. We will ensure this by tackling each partial derivative
in turn. In the immersion example, we first make sure 𝜕1𝑓(𝑥) ∶= 𝜕𝑓(𝑥)/𝜕𝑥1 is non-zero for
all 𝑥. Then we make sure 𝜕2𝑓(𝑥) is not colinear to 𝜕1𝑓(𝑥). Then we make sure 𝜕3𝑓(𝑥) is
not in the plane spanned by the two previous derivatives, etc… until all 𝑛 partial derivatives
are everywhere linearly independent.

In general, what happens is that, for each number 𝑗 between 1 and 𝑛, we wish 𝜕𝑗𝑓(𝑥) could
live in some open subset Ω𝑥 ⊂ ℝ𝑚. Assume there is a smooth family of loops 𝛾 ∶ ℝ𝑛×𝕊1 → ℝ𝑚

such that each 𝛾𝑥 takes values in Ω𝑥, and has average value ∫𝕊1 𝛾𝑥 = 𝜕𝑗𝑓(𝑥). Obviously such
loops can exist only if 𝜕𝑗𝑓(𝑥) is in the convex hull of Ω𝑥, and we will see this condition
is almost sufficient. In the immersion case, this convex hull condition will always be met
because, from the above description, we see that Ω𝑥 will always be the complement of a
linear subspace with codimension at least two.

For some large positive 𝑁 , we replace 𝑓 by the new map

𝑥 ↦ 𝑓(𝑥) + 1
𝑁 ∫

𝑁𝑥𝑗

0
[𝛾𝑥(𝑠) − 𝜕𝑗𝑓(𝑥)] 𝑑𝑠.

A wonderfully easy exercise shows that, provided 𝑁 is large enough, we have achieved
𝜕𝑗𝑓(𝑥) ∈ Ω𝑥, almost without modifying derivatives 𝜕𝑖𝑓(𝑥) for 𝑖 ≠ 𝑗, and almost without
moving 𝑓(𝑥). See 2.3 for a precise statement. This technique is called convex integration
since we are taking an integral under the assumption that 𝜕𝑗𝑓(𝑥) is in the convex hull of
Ω𝑥.

In addition, if we assume that 𝛾𝑥 is constant (necessarily with value 𝜕𝑗𝑓(𝑥)) for 𝑥 near
some subset 𝐾 where 𝜕𝑗𝑓(𝑥) was already good, then nothing changed on 𝐾 since the in-
tegrand vanishes there. It is also easy to damp out this modification by multiplying the
integral by a cut-off function. So this is a very local construction, and it isn’t obvious how
the absence of homotopical obstruction, embodied by the existence of a formal solution,
should enter the discussion. The answer is that is essentially provides a way to coherently
choose base points for the 𝛾𝑥 loops.

Now that we’ve seen how convex hulls enter the discussion we can provide one last
definition and state the actual main theorem that we formalized.

Definition. A relation ℛ ⊂ 𝐽1(𝑀, 𝑁) is ample if, for every (𝑥, 𝑦, 𝜑) ∈ ℛ and every
hyperplane 𝐻 ⊂ 𝑇𝑥𝑀 , the convex hull of the connected component of 𝜑 in

{𝜓 ∈ Hom(𝑇𝑥𝑀, 𝑇𝑦𝑁) | 𝜓|𝐻 = 𝜑|𝐻 and (𝑥, 𝑦, 𝜓) ∈ ℛ}

is the whole set of 𝜓 such that 𝜓|𝐻 = 𝜑|𝐻.

We can now state our goal in its full glory.

Theorem (Gromov). For any manifolds 𝑀 and 𝑁 , any relation ℛ ⊂ 𝐽1(𝑀, 𝑁) that is
open and ample satisfies the full ℎ-principle (relative, parametric and 𝐶0-dense).

Chapter 1 provides the loops supply. Chapter 2 then discusses the local theory, including
the key construction above, and Chapter 3 finally moves to manifolds, and proves the main
theorem and its sphere eversion corollary. Appendix A explains how the first two chapters
are already enough to derive Smale’s theorem, although in a slightly less natural way than
using the manifold case. This served as an intermediate target in the formalization, and can
be used for elementary teaching since it does not require any theory of manifolds.
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Chapter 1

Loops

1.1 Introduction
In this chapter, we explain how to construct families of loops to feed into the corrugation
process explained at the end of the introduction.

Throughout this document, 𝐸 and 𝐹 will denote finite-dimensional real vector spaces.

Definition 1.1. A loop is a map defined on the circle 𝕊1 = ℝ/ℤ with values in a finite-
dimensional vector space. It can also freely be seen as 1-periodic maps defined on ℝ.

The average of a loop 𝛾 is ̄𝛾 ∶= ∫𝕊1 𝛾(𝑠) 𝑑𝑠.
The support of a family 𝛾 of loops in 𝐹 parametrized by 𝐸 is the closure of the set of 𝑥

in 𝐸 such that 𝛾𝑥 is not a constant loop.

All of this chapter is devoted to proving the following proposition.

Proposition 1.2. Let 𝐾 a compact set in 𝐸. Let Ω be an open set in 𝐸 × 𝐹 .
Let 𝛽 and 𝑔 be smooth maps from 𝐸 to 𝐹 . Write Ω𝑥 ∶= {𝑦 ∈ 𝐹 ∣ (𝑥, 𝑦) ∈ Ω}, assume

that 𝛽(𝑥) ∈ Ω𝑥 for all 𝑥, and that 𝑔(𝑥) = 𝛽(𝑥) near 𝐾.
If, for every 𝑥, 𝑔(𝑥) is in the convex hull of the connected component of Ω𝑥 containing

𝛽(𝑥), then there exists a smooth family of loops

𝛾 ∶ 𝐸 × [0, 1] × 𝕊1 → 𝐹, (𝑥, 𝑡, 𝑠) ↦ 𝛾𝑡
𝑥(𝑠)

such that, for all 𝑥 ∈ 𝐸, all 𝑡 ∈ ℝ and all 𝑠 ∈ 𝕊1,

• 𝛾𝑡
𝑥(𝑠) ∈ Ω𝑥

• 𝛾0
𝑥(𝑠) = 𝛾𝑡

𝑥(1) = 𝛽(𝑥)
• ̄𝛾1

𝑥 = 𝑔(𝑥)
• 𝛾𝑡

𝑥(𝑠) = 𝛽(𝑥) if 𝑥 is near 𝐾.

Let us briefly sketch the geometric idea behind the above proposition if we pretend there
is only one point 𝑥, and drop it from the notation, and also focus only on 𝛾1. By assumption,
there is a finite collection of points 𝑝𝑖 in Ω and 𝜆𝑖 ∈ [0, 1] such that 𝑔 is the barycenter ∑ 𝜆𝑖𝑝𝑖.
Since Ω is open and connected, there is a smooth loop 𝛾0 which goes through each 𝑝𝑖. The
claim is that 𝑔 is the average value of 𝛾 = 𝛾0 ∘ ℎ for some self-diffeomorphism ℎ of 𝕊1. The
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idea is to choose ℎ such that 𝛾 rushes to 𝑝1, stays there during a time roughly 𝜆1, rushes to
𝑝2, etc. But, in order to achieve average exactly 𝑔, it seems like ℎ needs to be a discontinuous
piecewise constant map. The assumption that Ω is open means that the convex hull is open,
which gives enough slack to get away with a smooth ℎ.

In the previous proof sketch, there is a lot of freedom in constructing 𝛾, which is prob-
lematic when trying to do it consistently when 𝑥 varies.

1.2 Surrounding points
This section collects elementary results about convex sets in finite dimensional real vector
spaces that will help to construct families of loops. In this section, 𝐸 is a real vector space
with (finite) dimension 𝑑. The discussion will center around the following definition which
is tailored to our ulterior needs.

Definition 1.3. A point 𝑥 in 𝐸 is surrounded by points 𝑝0, …, 𝑝𝑑 if those points are affinely
independent and there exist weights 𝑤𝑖 ∈ (0, 1) with sum 1 such that 𝑥 = ∑𝑖 𝑤𝑖𝑝𝑖.

Note that, in the above definition, the number of points 𝑝𝑖 is fixed by the dimension 𝑑
of 𝐸, and that the weights 𝑤𝑖 are the barycentric coordinates of 𝑥 with respect to the affine
basis 𝑝0, … , 𝑝𝑑.

The first important point in this definition is that surrounding is smoothly locally stable:
if 𝑥 is surrounded by a collection of points 𝑝 then points that are close to 𝑦 are surrounded
by every collection of points 𝑞 that is closed to 𝑝, and the relevant barycentric coordinates
smoothly depend on 𝑦 and 𝑞. The precise statement follows.

Lemma 1.4. For every 𝑥 in 𝐸 and every collection of points 𝑝 ∈ 𝐸𝑑+1 surrounding 𝑥, there
is a function 𝑤∶ 𝐸 × 𝐸𝑑+1 → ℝ𝑑+1 such that, for every (𝑦, 𝑞) in a neighborhood of (𝑥, 𝑝),

• 𝑤 is smooth at (𝑦, 𝑞)
• 𝑤(𝑦, 𝑞) > 0

• ∑𝑑
𝑖=0 𝑤𝑖(𝑦, 𝑞) = 1

• 𝑦 = ∑𝑑
𝑖=0 𝑤𝑖(𝑦, 𝑞)𝑞𝑖.

Proof. Let:

𝐴 = 𝐸 × {𝑞 ∈ 𝐸𝑑+1 | 𝑞 is an affine basis for 𝐸},

and define:

𝑤∶ 𝐴 → ℝ𝑑+1

(𝑦, 𝑞) ↦ barycentric coordinates of 𝑦 with respect to 𝑞.

If we fix an affine basis 𝑏 of 𝐸, we may express 𝑤 as a ratio of determinants in terms of
coordinates relative to 𝑏. More precisely, by Cramer’s rule, if 0 ≤ 𝑖 ≤ 𝑑 and 𝑤𝑖 is the 𝑖th

component of 𝑤, then:

𝑤𝑖(𝑦, 𝑞) = det 𝑀𝑖(𝑦, 𝑞)/ det 𝑁(𝑞)
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where 𝑁(𝑞) is the (𝑑 + 1) × (𝑑 + 1) matrix whose columns are the barycentric coordinates
of the components of 𝑞 relative to 𝑏, and 𝑀𝑖(𝑦, 𝑞) is 𝑁(𝑞) except with column 𝑖 replaced by
the barycentric coordinates of 𝑦 relative to 𝑏.

Since determinants are smooth functions and (𝑦, 𝑞) ↦ det 𝑁(𝑞) is non-vanishing on 𝐴,
𝑤 is smooth on 𝐴.

Finally define:

𝑈 = 𝑤−1((0, ∞)𝑑+1),
and note that 𝑈 is open in 𝐴, since it is the preimage of an open set under the continuous
map 𝑤. In fact since 𝐴 is open, 𝑈 is open as a subset of 𝐸 × 𝐸𝑑+1. Note that (𝑥, 𝑝) ∈ 𝑈
since 𝑝 surrounds 𝑥.

We may extend 𝑤 to 𝐸 × 𝐸𝑑+1 by giving it any values at all outside 𝐴.

Then we need a criterion ensuring a point 𝑥 is surrounded by a collection of points taken
in a given subset 𝑃 . The first temptation is to hope that 𝑥 being in the interior of the convex
hull of 𝑃 is enough. But this is not true. For instance the center of a square in a plane is in
the interior of the convex hull of the set 𝑃 of vertices of the square, but it isn’t surrounded
by any set of vertices. This counter example also shows that the stability lemma above is
slightly less trivial than it sounds.

The rest of this section is devoted to the following result that proves no such issue arises
when 𝑃 is open.

Proposition 1.5. If a point 𝑥 of 𝐸 lies in the convex hull of an open set 𝑃 , then it is
surrounded by some collection of points belonging to 𝑃 .

This proposition will be proven at the end of this section. We’ll first need the Carathéodory
lemma:

Lemma 1.6 (Carathéodory’s lemma). If a point 𝑥 of 𝐸 lies in the convex hull of a set 𝑃 ,
then 𝑥 belongs to the convex hull of a finite set of affinely independent points of 𝑃 .

Proof. By assumption, there is a finite set of points 𝑡𝑖 in 𝑃 and weights 𝑓𝑖 such that 𝑥 =
∑ 𝑓𝑖𝑡𝑖, each 𝑓𝑖 is non-negative and ∑ 𝑓𝑖 = 1. Choose such a set of points of minimum
cardinality. We argue by contradiction that such a set must be affinely independent.

Thus suppose that there is some vanishing combination ∑ 𝑔𝑖𝑡𝑖 with ∑ 𝑔𝑖 = 0 and not
all 𝑔𝑖 vanish. Let 𝑆 = {𝑖|𝑔𝑖 > 0}. Let 𝑖0 in 𝑆 be an index minimizing 𝑓𝑖/𝑔𝑖. We shall obtain
our contradiction by showing that 𝑥 belongs to the convex hull of the set {𝑡𝑖|𝑖 ≠ 𝑖0}, which
has cardinality strictly smaller than {𝑡𝑖}.

We thus define new weights 𝑘𝑖 = 𝑓𝑖−𝑔𝑖𝑓𝑖0
/𝑔𝑖0

. These weights sum to ∑ 𝑓𝑖−(∑ 𝑔𝑖)𝑓𝑖0
/𝑔𝑖0

=
1 and 𝑘𝑖0

= 0. Each 𝑘𝑖 is non-negative, thanks to the choice of 𝑖0 if 𝑖 is in 𝑆 or using that
𝑓𝑖, −𝑔𝑖 and 𝑓𝑖0

/𝑔𝑖0
are all non-negative when 𝑖 is not in 𝑆. It remain to compute

∑
𝑖≠𝑖0

𝑘𝑖𝑡𝑖 = ∑
𝑖

𝑘𝑖𝑡𝑖

= ∑
𝑖

(𝑓𝑖 − 𝑔𝑖𝑓𝑖0
/𝑔𝑖0

)𝑡𝑖

= ∑
𝑖

𝑓𝑖𝑡𝑖 − (∑
𝑖

𝑔𝑖𝑡𝑖) 𝑓𝑖0
/𝑔𝑖0

)

= 𝑥
where we use 𝑘𝑖0

= 0 in the first equality.
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Lemma 1.7. Given an affine basis 𝑏 of 𝐸, the interior of the convex hull of 𝑏 is the set of
points with strictly positive barycentric coordinates.

Proof. For each 𝑖, let:
𝑤𝑖 ∶ 𝐸 → ℝ

be the 𝑖th barycentric coordinate with respect to the basis 𝑏. Since 𝐸 is finite-dimensional,
each 𝑤𝑖 is a continuous open map. For such a map, the operation of taking interior commutes
with preimage, and so we have:

IntConv(𝑏) = Int (⋂
𝑖

𝑤−1
𝑖 ([0, ∞)))

= ⋂
𝑖

Int(𝑤−1
𝑖 ([0, ∞))

= ⋂
𝑖

𝑤−1
𝑖 (Int([0, ∞))

= ⋂
𝑖

𝑤−1
𝑖 ((0, ∞))

as required.

Lemma 1.8. Given a point 𝑐 of 𝐸 and a real number 𝑡, let:

ℎ𝑐
𝑡 ∶ 𝐸 → 𝐸

be the homothety which dilates about 𝑐 by a scale of 𝑡.
Suppose 𝑐 belongs to the interior of a convex subset 𝐶 of 𝐸 and 𝑡 > 1, then

𝐶 ⊆ Int(ℎ𝑐
𝑡(𝐶))

Proof. Since ℎ𝑐
𝑡 is a homeomorphism with inverse ℎ𝑐

𝑡−1 , taking 𝑠 = 𝑡−1, the required result
is equivalent to showing:

ℎ𝑐
𝑠(𝐶) ⊆ Int(𝐶)

where 𝑠 ∈ (0, 1).
Let 𝑥 be a point of 𝐶, we must show there exists an open neighborhood 𝑈 of ℎ𝑐

𝑠(𝑥),
contained in 𝐶. In fact we claim:

𝑈 = ℎ𝑥
1−𝑠(Int(𝐶))

is such a set. Indeed 𝑈 is open since ℎ𝑥
1−𝑠 is a homeomorphism and 𝑈 contains ℎ𝑐

𝑠(𝑥) since:

ℎ𝑐
𝑠(𝑥) = ℎ𝑥

1−𝑠(𝑐) ∈ ℎ𝑥
1−𝑠(Int(𝐶))

since 𝑐 belongs to Int(𝐶). Finally:

ℎ𝑥
1−𝑠(Int(𝐶)) ⊆ ℎ𝑥

1−𝑠(𝐶) ⊆ 𝐶

where the second inclusion follows since 𝐶 is convex and contains 𝑥.

We are now ready to come back to Proposition 1.5.
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Proof of Proposition 1.5. It follows from Lemma 1.7 that we need only show that 𝐸 has an
affine basis 𝑏 of points belonging to 𝑃 such that 𝑥 lies in the interior of the convex hull of 𝑏.

Carathéodory’s lemma 1.6 provides affinely independent points 𝑝0, … , 𝑝𝑘 in 𝑃 such that
𝑥 belongs to their convex hull. Since 𝑃 is open, we may extend 𝑝𝑖 to an affine basis

̂𝑏 = {𝑝0, … , 𝑝𝑑},

where all points still belong to 𝑃 . Note that 𝑥 belongs to the convex hull of �̂�.
Now let 𝑐 be a point in the interior of the convex hull of ̂𝑏 (e.g., the centroid) and for

each 𝜖 > 0, consider the homothety

ℎ1+𝜖 ∶ 𝐸 → 𝐸,

which dilates about 𝑐 by a scale of 1 + 𝜖.
Since ̂𝑏 is finite and contained in 𝑃 , and 𝑃 is open, there exists 𝜖 > 0 such that

ℎ1+𝜖( ̂𝑏) ⊆ 𝑃 .

We claim the required basis is:
𝑏 = ℎ1+𝜖( ̂𝑏)

for any such 𝜖. Indeed, applying Lemma 1.8 to Conv( ̂𝑏) we see:

𝑥 ∈ Conv( ̂𝑏) ⊆ Int(ℎ1+𝜖(Conv( ̂𝑏)))
= Int(Conv(ℎ1+𝜖( ̂𝑏)))

as required.

1.3 Constructing loops
1.3.1 Surrounding families
It will be convenient to introduce some more vocabulary.

Definition 1.9. We say a loop 𝛾 surrounds a vector 𝑣 if 𝑣 is surrounded by a collection of
points belonging to the image of 𝛾. Also, we fix a base point 0 in 𝕊1 and say a loop is based
at some point 𝑏 if 0 is sent to 𝑏.

The first main task in proving Proposition 1.2 is to construct suitable families of loops 𝛾𝑥
surrounding 𝑔(𝑥), by assembling local families of loops. Those will then be reparametrized to
get the correct average in the next section. In this section, we will work only with continuous
loops. This will make constructions easier and we will smooth those loops in the end, taking
advantage of the fact that Ω and the surrounding condition are open.

Thanks to Carathéodory’s lemma, constructing one such loop with values in some open
𝑂 is easy as soon as 𝑣 belongs to the convex hull of 𝑂.

Lemma 1.10. If a vector 𝑣 is in the convex hull of a connected open subset 𝑂 then, for
every base point 𝑏 ∈ 𝑂, there is a continuous family of loops 𝛾 ∶ [0, 1]×𝕊1 → 𝐸, (𝑡, 𝑠) ↦ 𝛾𝑡(𝑠)
such that, for all 𝑡 and 𝑠:

• 𝛾𝑡 is based at 𝑏
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• 𝛾0(𝑠) = 𝑏
• 𝛾𝑡(𝑠) ∈ 𝑂
• 𝛾1 surrounds 𝑣

Proof. Since 𝑂 is open, Proposition 1.5 gives points 𝑝𝑖 in 𝑂 surrounding 𝑥. Since 𝑂 is open
and connected, it is path connected. Let 𝜆 ∶ [0, 1] → Ω𝑥 be a continuous path starting at 𝑏
and going through the points 𝑝𝑖. We can concatenate 𝜆 and its opposite to get 𝛾1. This is
a round-trip loop: it back-tracks when it reaches 𝜆(1) at 𝑠 = 1/2. We then define 𝛾𝑡 as the
round-trip that stops at 𝑠 = 𝑡/2, stays still until 𝑠 = 1 − 𝑡/2 and then backtracks.

Definition 1.11. A continuous family of loops 𝛾 ∶ 𝐸 × [0, 1] × 𝕊1 → 𝐹, (𝑥, 𝑡, 𝑠) ↦ 𝛾𝑡
𝑥(𝑠)

surrounds a map 𝑔 ∶ 𝐸 → 𝐹 with base 𝛽 ∶ 𝐸 → 𝐹 on 𝑈 ⊂ 𝐸 in Ω ⊂ 𝐸 × 𝐹 if, for every 𝑥 in
𝑈 , every 𝑡 ∈ [0, 1] and every 𝑠 ∈ 𝕊1,

• 𝛾𝑡
𝑥 is based at 𝛽(𝑥)

• 𝛾0
𝑥(𝑠) = 𝛽(𝑥)

• 𝛾1
𝑥 surrounds 𝑔(𝑥)

• (𝑥, 𝛾𝑡
𝑥(𝑠)) ∈ Ω.

The space of such families will be denoted by ℒ(𝑔, 𝛽, 𝑈, Ω).
Families of surrounding loops are easy to construct locally.

Lemma 1.12. Assume Ω is open over some neighborhood of 𝑥0. If 𝑔(𝑥0) is in the convex
hull of the connected component of Ω𝑥0

containing 𝛽(𝑥0), then there is a continuous family
of loops defined near 𝑥0, based at 𝛽, taking value in Ω and surrounding 𝑔.

Proof. In this proof we don’t mention the 𝑡 parameter since it plays no role, but it is still
there. Lemma 1.10 gives a loop 𝛾 based at 𝛽(𝑥0), taking values in Ω𝑥0

and surrounding
𝑔(𝑥0). We set 𝛾𝑥(𝑠) = 𝛽(𝑥) + (𝛾(𝑠) − 𝛽(𝑥0)). Each 𝛾𝑥 takes values in Ω𝑥 because Ω is open
over some neighborhood of 𝑥0. Lemma 1.4 guarantees that this loop surrounds 𝑔(𝑥) for 𝑥
close enough to 𝑥0.

The difficulty in constructing global families of surrounding loops is that there are plenty
of surrounding loops and we need to choose them consistently. The key feature of the above
definition is that the 𝑡 parameter not only allows us to cut out the corrugation process in
the next chapter, but also brings a “satisfied or refund” guarantee, as explained in the next
lemma.

Lemma 1.13. For every set 𝑈 ⊂ 𝐸, ℒ(𝑔, 𝛽, 𝑈, Ω) is “path connected”: for every 𝛾0 and 𝛾1
in ℒ(𝑔, 𝛽, 𝑈, Ω), there is a continuous map 𝛿 ∶ [0, 1]×𝐸 ×[0, 1]×𝕊1 → 𝐹, (𝜏, 𝑥, 𝑡, 𝑠) ↦ 𝛿𝑡

𝜏,𝑥(𝑠)
which interpolates between 𝛾0 and 𝛾1 in ℒ(𝑔, 𝛽, 𝑈, Ω).

The construction below morally proves that each ℒ(𝑔, 𝛽, 𝑈, Ω) is contractible, but we
will not even specify a topology on those spaces. The definition of “path connected” in
quotation marks is the above specific statement, and only this statement will be used.
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Proof. Let 𝜌 be the piecewise affine map from ℝ to ℝ such that 𝜌(𝜏) = 1 if 𝜏 ≤ 1/2, 𝜌 is
affine on [1/2, 1], 𝜌(𝜏) = 0 if 𝜏 ≥ 1. We set

𝛿𝑡
𝜏,𝑥(𝑠) = {𝛾𝜌(𝜏)𝑡

0,𝑥 ( 1
1−𝜏 𝑠) if 𝑠 ≤ 1 − 𝜏 and 𝜏 < 1

𝛾𝜌(1−𝜏)𝑡
1,𝑥 ( 1

𝜏 (𝑠 − (1 − 𝜏))) if 𝑠 ≥ 1 − 𝜏 and 𝜏 > 0

It is clear that if 𝑠 = 1 − 𝜏 then both branches agree and are equal to 𝛽(𝑥). Therefore it is
easy to see that 𝛿 is continuous at (𝜏, 𝑥, 𝑡, 𝑠) except when (𝜏, 𝑠) = (1, 0) or (𝜏, 𝑠) = (0, 1).

To show the continuity for (𝜏, 𝑠) = (1, 0), let 𝐾 be a compact neighborhood of 𝑥 in 𝐸.
Then 𝛾0 is uniformly continuous on the compact set 𝐾 × [0, 1] × 𝕊1, which means that 𝛾𝑡

0,𝑥′

tends uniformly to the constant function 𝑠 ↦ 𝛽(𝑥) as (𝑥′, 𝑡) tends to (𝑥, 0). This means that
𝛾𝜌(𝜏)𝑡′

0,𝑥′ tends uniformly to the constant function 𝑠 ↦ 𝛽(𝑥) as (𝜏, 𝑥′, 𝑡′) tends to (1, 𝑥, 𝑡). This
means that 𝛿 is continuous at (𝜏, 𝑠) = (1, 0) (it is clear that the other branch also tends to
𝛽(𝑥)). The continuity at (𝜏, 𝑠) = (0, 1) is entirely analogous.

The beautiful observation motivating the above formula is why each 𝛿1
𝜏,𝑥 surrounds 𝑔(𝑥).

The key is that the image of 𝛿1
𝜏,𝑥 contains the image of 𝛾1

0,𝑥 when 𝜏 ≤ 1/2, and contains the
image of 𝛾1

1,𝑥 when 𝜏 ≥ 1/2. Hence 𝛿1
𝜏,𝑥 always surrounds 𝑔(𝑥).

Corollary 1.14. Let 𝑈0 and 𝑈1 be open sets in 𝐸. Let 𝐾0 ⊂ 𝑈0 and 𝐾1 ⊂ 𝑈1 be compact
subsets. For any 𝛾0 ∈ ℒ(𝑈0, 𝑔, 𝛽, Ω) and 𝛾1 ∈ ℒ(𝑈1, 𝑔, 𝛽, Ω), there exists a neighborhood 𝑈
of 𝐾0 ∪ 𝐾1 and there exists 𝛾 ∈ ℒ(𝑈, 𝑔, 𝛽, Ω) which coincides with 𝛾0 near 𝐾0 ∪ 𝑈𝑐

1 .

Proof. Let 𝐶0 = 𝐾0 ∪ 𝑈𝑐
1 and 𝐶1 ∶= 𝐾1 ∖ 𝑈0. Since 𝐶0 and 𝐶1 are disjoint closed sets, there

is some continuous cut-off 𝜌 ∶ 𝐸 → [0, 1] which vanishes on a neighborhood of 𝐶0 and equals
one on a neighborhood of 𝐶1.

Lemma 1.13 gives a homotopy of loops 𝛾𝜏 from 𝛾0 to 𝛾1 on 𝑈0 ∩ 𝑈1. Moreover, note that
𝛾𝜏 is defined on all of 𝐸. On 𝑈 ′

0 ∪ (𝑈0 ∩ 𝑈1) ∪ 𝑈 ′
1, which is a neighborhood of 𝐾0 ∪ 𝐾1, we

set
𝛾𝑥 = 𝛾𝜌(𝑥),𝑥

which has the required properties.

Lemma 1.15. In the setup of Proposition 1.2, assume we have a continuous family 𝛾 of
loops defined near 𝐾 which is based at 𝛽, surrounds 𝑔 and such that each 𝛾𝑡

𝑥 takes values in
Ω𝑥. Then there such a family which is defined on all of 𝐸 and agrees with 𝛾 near 𝐾.

Proof. Lemma 1.12 proves the existence of local families of surrounding loops and Corol-
lary 1.14 allows to patch such families hence Lemma B.9 proves global existence.

1.3.2 The reparametrization lemma
The second ingredient needed to prove Proposition 1.2 is a parametric reparametrization
lemma. Gromov’s original proof of this lemma makes explicit use of a partition of unity.
Motivated in particular by formalization purposes, we will first state more abstract versions
whose statements do not involve any partition of unity but directly state a local-to-global
property.

Lemma 1.16. Let 𝐸 and 𝐹 be real normed vector spaces. Assume that 𝐸 is finite dimen-
sional. Let 𝑃 be a predicate on 𝐸 × 𝐹 such that for all 𝑥 in 𝐸, {𝑦 | 𝑃 (𝑥, 𝑦)} is convex. Let
𝑛 be a natural number or +∞. Assume that every 𝑥 has a neighbourhood 𝑈 on which there
exists a 𝐶𝑛 function 𝑓 such that ∀𝑥 ∈ 𝑈, 𝑃(𝑥, 𝑓(𝑥)). Then there is a global 𝐶𝑛 function 𝑓
such that ∀𝑥, 𝑃(𝑥, 𝑓(𝑥)).
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Proof. The assumption give us an open cover (𝑈𝑖)𝑖∈𝐼 of 𝐸 and functions 𝑓𝑖 ∶ 𝐸 → 𝐹 that
are smooth on 𝑈𝑖 and such that 𝑃(𝑥, 𝑓𝑖(𝑥)) for all 𝑥 in 𝑈𝑖. Let 𝜌 be a smooth partition of
unity associated to this cover. The function 𝑓 = ∑ 𝜌𝑖𝑓𝑖 is smooth on 𝐸 and the convexity
assumption on 𝑃 ensures it satisfies ∀𝑥, 𝑃(𝑥, 𝑓(𝑥)). Indeed each value 𝑓(𝑥) is a convex
combination of finitely many values 𝑓𝑖(𝑥) where 𝑖 satisfies that 𝑥 is in 𝑈𝑖.

We will also need a version where 𝐹 is a space of smooth functions. Since there is no
relevant norm to put on such a space, we cannot deduce this version from the above one.

Lemma 1.17. Let 𝐸1, 𝐸2 and 𝐹 be real vector spaces. Assume 𝐸1 and 𝐸2 are finite
dimensional. Let 𝑛 be a natural number or +∞. Let 𝑃 be a property of pairs (𝑥, 𝑓) with
𝑥 ∈ 𝐸1 and 𝑓 ∶ 𝐸2 → 𝐹 . Assume that, for every 𝑥, the space of functions 𝑓 such that
𝑃(𝑥, 𝑓) holds is convex. Assume that for every 𝑥0 in 𝐸1 there is a neighborhood 𝑈 of 𝑥0 and
a function 𝜑 ∶ 𝐸1 × 𝐸2 → 𝐹 which is 𝐶𝑛 on 𝑈 × 𝐸2 and such that 𝑃(𝑥, 𝜑(𝑥, ⋅)) holds for
every 𝑥 in 𝑈 . There there is a global 𝐶𝑛 function 𝜑 ∶ 𝐸1 × 𝐸2 → 𝐹 such that 𝑃(𝑥, 𝜑(𝑥, ⋅))
holds for every 𝑥.

Proof. This is completely analogous to the previous proof.

Lemma 1.18. Let 𝛾 ∶ 𝐸 × 𝕊1 → 𝐹 be a smooth family of loops surrounding a map 𝑔. There
is a smooth family 𝜑∶ 𝐸 × 𝕊1 → 𝕊1 such that each 𝛾𝑥 ∘ 𝜑𝑥 has average 𝑔(𝑥) and 𝜑𝑥(0) = 0.

Proof. Gromov’s main idea in order to prove this result is to translate the problem of
constructing a family of circle maps 𝜑 into the problem of constructing a family of smooth
density functions 𝑓 on the circle. We introduce some vocabulary in order to describe this
reduction. Let 𝑓 ∶ 𝐸 × ℝ → ℝ be a smooth positive function that is 1-periodic in its second
argument. We say that 𝑓 is a centering density for (𝛾, 𝑔) at 𝑥 if 𝑓𝑥 ∶ ℝ → ℝ has average value
one when seen as a function on 𝕊1 and the average value of 𝑓𝑥𝛾𝑥 is 𝑔(𝑥). We claim that, in
order to prove the lemma, it is sufficient to build such an 𝑓 which is centering at every 𝑥.
Indeed, assume we have such an 𝑓 . We then get a smooth family of ℤ-equivariant functions
𝜓 ∶ 𝐸 × ℝ → ℝ defined by 𝜓𝑥(𝑡) = ∫𝑡

0 𝑓𝑥(𝑠)𝑑𝑠. Because 𝜓 is smooth and each 𝜓𝑥 is strictly
monotone and ℤ-equivariant, one can check there is a smooth map 𝜑 ∶ 𝐸 × ℝ → ℝ which is
ℤ-equivariant and such that 𝜑𝑥 ∘ 𝜓𝑥 = Id for each 𝑥. Seen as a family of functions from 𝕊1

to 𝕊1, those functions are suitable since, for every 𝑥, the change of variable formula gives:

∫
𝕊1

𝛾𝑥 ∘ 𝜑𝑥(𝑠)𝑑𝑠 = ∫
𝕊1

𝜓′
𝑥(𝑠)𝛾𝑥 ∘ 𝜑𝑥(𝜓𝑥(𝑠))𝑑𝑠 = ∫

𝕊1
𝑓𝑥(𝑠)𝛾𝑥(𝑠)𝑑𝑠 = 𝑔(𝑥).

We now prove the existence of a function which is a centering density at every point of
𝑥. For any given 𝑥, this constraint is clearly convex. Hence Lemma 1.17 ensures it is enough
to prove existence of functions that are centering densities in a neighborhood of any given
point 𝑥. So we fix some 𝑥 in 𝐸.

Since 𝛾𝑥 strictly surrounds 𝑔(𝑥), there are points 𝑠1, …, 𝑠𝑛+1 in 𝕊1 such that 𝑔(𝑥) is
surrounded by the corresponding points 𝛾𝑥(𝑠𝑗).

Let 𝑓1, …, 𝑓𝑛+1 be smooth positive periodic maps from ℝ to ℝ which average value 1 on a
period and such that the corresponding measures on 𝕊1 are very close to the Dirac measures
on 𝑠𝑗, ie. for any function ℎ, the average value of 𝑓𝑗ℎ is almost ℎ(𝑠𝑗). We set 𝑝𝑗 = ∫ 𝑓𝑗𝛾𝑥 𝑑𝑠,
which is almost 𝛾𝑥(𝑠𝑗) so that 𝑔(𝑥) = ∑ 𝑤𝑗𝑝𝑗 for some weights 𝑤𝑗 in the open interval (0, 1)
according to Lemma 1.4.

If 𝑥′ is in a sufficiently small neighborhood of 𝑥, Lemma 1.4 gives smooth weight functions
𝑤𝑗 such that 𝑔(𝑥′) = ∑ 𝑤𝑗(𝑥′)𝑝𝑗(𝑥′). Hence we can set 𝑓𝑥′(𝑠) = ∑ 𝑤𝑗(𝑥′)𝑓𝑗(𝑠).
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1.3.3 Proof of the loop construction proposition
We finally assemble the ingredients from the previous two sections.

Proof of Proposition 1.2. Let 𝛾∗ be a family of loops surrounding the origin in 𝐵𝐹 (0, 1) the
open unit ball in 𝐹 , constructed using Lemma 1.12. For 𝑥 in some neighborhood 𝑈∗ of
𝐾 where 𝑔 = 𝛽, we set 𝛾𝑥 = 𝑔(𝑥) + 𝜀𝛾∗ where 𝜀 > 0 is sufficiently small to ensure that
𝐵𝐸×𝐹 ((𝑥, 𝛽(𝑥)), 2𝜀) ⊆ Ω (recall Ω is open and 𝐾 is compact). Lemma 1.15 extends this
family to a continuous family of surrounding loops 𝛾𝑥 for all 𝑥 (this is not yet our final 𝛾).

We then need to approximate this continuous family by a smooth one. Some care is
needed to ensure that it stays based at 𝛽. We can first reparametrize 𝛾 on [0, 1] × 𝕊1 to
ensure that 𝛾 is constant in a neighborhood of 𝐶 = {(𝑡, 𝑠) ∈ [0, 1] × 𝕊1 ∣ 𝑡 = 0 or 𝑠 = 0}.
Using Lemma 1.16, we can find a smooth function that has distance at most 𝜀 from 𝛾 and
coincides with 𝛾 on 𝐶 (using the fact that 𝛾 is already smooth near 𝐶). Since all loops that
are sufficiently close to 𝛾 still surround 𝑔, we can also ensure that the new smoothened 𝛾 is
still surrounding.

Then Lemma 1.18 gives a family of circle diffeomorphisms ℎ𝑥 such that 𝛾1
𝑥 ∘ ℎ𝑥 has

average 𝑔(𝑥).
Finally we choose a cut-off function function 𝜒 which vanishes near 𝐸 ∖ 𝑈 ∗ and equals

one near 𝐾. As our final family of loops, we choose 𝜒(𝑥)𝑔(𝑥) + (1 − 𝜒(𝑥))(𝛾𝑥 ∘ ℎ𝑥). This
operation does not change the average values of these loops, because it rescales them around
their average value, but makes them constant near 𝐾. Also, those loops stay in Ω, thanks
to our choice of 𝜀.
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Chapter 2

Local theory of convex
integration

2.1 Key construction
The goal of this chapter is to explain the local aspects of (Theillière’s implementation of)
convex integration, the next chapter will cover global aspects.

The elementary step of convex integration modifies the derivative of a map in one direc-
tion. The precise meaning of “one direction” relies on the following definition.
Definition 2.1. A dual pair on a vector space 𝐸 is a pair (𝜋, 𝑣) where 𝜋 is a linear form
on 𝐸 and 𝑣 a vector in 𝐸 such that 𝜋(𝑣) = 1.

Let 𝐸 and 𝐹 be finite dimensional real normed vector spaces. Let 𝑓 ∶ 𝐸 → 𝐹 be a smooth
map, and let (𝜋, 𝑣) be a dual pair on 𝐸. We want to modify 𝐷𝑓 in the direction of 𝑣 while
almost preserving it on ker 𝜋. Say we wish 𝐷𝑓(𝑥)𝑣 could live in some open subset Ω𝑥 ⊂ 𝐹 .
Assume there is a smooth family of loops 𝛾 ∶ 𝐸 × 𝕊1 → 𝐹 such that each 𝛾𝑥 takes values in
Ω𝑥, and its average value 𝛾𝑥 = ∫𝕊1 𝛾𝑥 is 𝐷𝑓(𝑥)𝑣 for all 𝑥. Obviously such loops can exist
only if 𝐷𝑓(𝑥)𝑣 is in the convex hull of Ω𝑥, and we saw in the previous chapter that this is
almost sufficient (and we’ll see this is sufficiently almost sufficient for our purposes). Then
we can modify 𝑓 to fulfil our wish using the following construction.
Definition 2.2 (Theillière 2018). The map obtained by corrugation of 𝑓 in direction (𝜋, 𝑣)
using 𝛾 with oscillation number 𝑁 is

𝑥 ↦ 𝑓(𝑥) + 1
𝑁 ∫

𝑁𝜋(𝑥)

0
[𝛾𝑥(𝑠) − 𝛾𝑥] 𝑑𝑠.

In the above definition, we mostly think of 𝑁 as a large natural number. But we don’t
actually require it, any positive real number will do.

The next proposition implies that, provided 𝑁 is large enough, we have achieved 𝐷𝑓 ′(𝑥)𝑣 ∈
Ω𝑥, almost without modifying derivatives in the directions of ker 𝜋, and almost without mov-
ing 𝑓(𝑥).
Proposition 2.3 (Theillière 2018). Let 𝑓 be a 𝒞1 function from 𝐸 to 𝐹 . Let (𝜋, 𝑣) be a
dual pair on 𝐸. Let 𝛾 ∶ 𝐸 × 𝕊1 → 𝐹 be a 𝒞1 family of loops such that 𝛾𝑥 = 𝐷𝑓(𝑥)𝑣 for all 𝑥.

For any compact set 𝐾 ⊂ 𝐸 and any positive 𝜀, the function 𝑓 ′ obtained by corrugation
of 𝑓 in direction (𝜋, 𝑣) using 𝛾 with large enough oscillation number 𝑁 satisfies:
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1. ∀𝑥 ∈ 𝐾, ‖𝑓 ′(𝑥) − 𝑓(𝑥)‖ ≤ 𝜀
2. ∀𝑥 ∈ 𝐾, ‖(𝐷𝑓 ′(𝑥) − 𝐷𝑓(𝑥))| ker 𝜋‖ ≤ 𝜀.

3. ∀𝑥 ∈ 𝐾, ‖𝐷𝑓 ′(𝑥)𝑣 − 𝛾(𝑥, 𝑁𝜋(𝑥))‖ ≤ 𝜀
In addition, all the differences estimated above vanish if 𝑥 is outside the support of 𝛾.

Proof. We set Γ𝑥(𝑡) = ∫𝑡
0 (𝛾𝑥(𝑠) − 𝛾𝑥) 𝑑𝑠, so that 𝑓 ′(𝑥) = 𝑓(𝑥) + Γ𝑥(𝑁𝜋(𝑥))/𝑁 . Because

each Γ𝑥 is 1-periodic, and everything has compact support in 𝐸, all derivatives of Γ are
uniformly bounded. Item 1 in the statement is then obvious. Item 2 also follows since
𝜕𝑖𝑓 ′(𝑥) = 𝜕𝑖𝑓(𝑥) + 𝜕𝑖Γ(𝑥, 𝑁𝜋(𝑥))/𝑁 . In order to prove Item 3, we compute:

𝐷𝑓 ′(𝑥)𝑣 = 𝐷𝑓(𝑥)𝑣 + 1
𝑁 𝜕𝑗Γ(𝑥, 𝑁𝜋(𝑥)) + 𝑁

𝑁 𝜕𝑡Γ(𝑥, 𝑁𝜋(𝑥))

= 𝐷𝑓(𝑥)𝑣 + 𝑂 ( 1
𝑁 ) + 𝛾(𝑥, 𝑁𝜋(𝑥)) − 𝐷𝑓(𝑥)𝑣

= 𝛾(𝑥, 𝑁𝜋(𝑥)) + 𝑂 ( 1
𝑁 ) .

Outside the support of 𝛾, Γ𝑥 and its derivative with respect to 𝑥 vanish identically (for the
derivative computation, it is important that the support of 𝛾 is the closure of the set of 𝑥
where 𝛾𝑥 is not constant).

2.2 The main inductive step
Definition 2.4. Let 𝐸′ be a linear subspace of 𝐸. A map ℱ = (𝑓, 𝜑) ∶ 𝐸 → 𝐹 ×Hom(𝐸, 𝐹)
is 𝐸′–holonomic if, for every 𝑣 in 𝐸′ and every 𝑥, 𝐷𝑓(𝑥)𝑣 = 𝜑(𝑥)𝑣.

Definition 2.5. A first order differential relation for maps from 𝐸 to 𝐹 is a subset ℛ of
𝐸 × 𝐹 × Hom(𝐸, 𝐹).

Until the end of this section, ℛ will always denote a first order differential relation for
maps from 𝐸 to 𝐹 .

Definition 2.6. A formal solution of a differential relation ℛ is a map ℱ = (𝑓, 𝜑) ∶ 𝐸 →
𝐹 × Hom(𝐸, 𝐹) such that, for every 𝑥, (𝑥, 𝑓(𝑥), 𝜑(𝑥)) is in ℛ.

The first component of a map ℱ ∶ 𝐸 → 𝐹 × Hom(𝐸, 𝐹) will sometimes be denoted by
bs ℱ∶ 𝐸 → 𝐹 and called the base map of ℱ.

Definition 2.7. A 1-jet section from 𝐸 to 𝐹 is a function from 𝐸 to 𝐹 × Hom(𝐸, 𝐹). A
homotopy of 1-jet sections is a smooth map ℱ ∶ ℝ × 𝐸 → 𝐹 × Hom(𝐸, 𝐹).

Typically, 𝑥 ↦ ℱ(𝑡, 𝑥) will be denoted by ℱ𝑡. It could seem more natural to take
[0, 1] × 𝐸 as the source of a homotopy but this would be less convenient for formalization
and wouldn’t change anything since any map from ℝ × 𝐸 can be restricted to [0, 1] × 𝐸 and
every map from [0, 1] × 𝐸 could be extended.

Definition 2.8. For every 𝜎 = (𝑥, 𝑦, 𝜑), the slice of ℛ at 𝜎 with respect to (𝜋, 𝑣) is:

ℛ(𝜎, 𝜋, 𝑣) = {𝑤 ∈ 𝐹 | (𝑥, 𝑦, 𝜑 + (𝑤 − 𝜑(𝑣)) ⊗ 𝜋) ∈ ℛ}.
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Lemma 2.9. The linear map 𝜑 + (𝑤 − 𝜑(𝑣)) ⊗ 𝜋) coincides with 𝜑 on ker 𝜋 and sends 𝑣 to
𝑤. If 𝜎 belongs to ℛ then 𝜑(𝑣) belongs to {𝑤 ∈ 𝐹, (𝑥, 𝑦, 𝜑 + (𝑤 − 𝜑(𝑣)) ⊗ 𝜋) ∈ ℛ}.

Proof. These are direct checks.

We’ll use the notation Conn𝑤 𝐴 to denote the connected component of 𝐴 that contains
𝑤, or the empty set if 𝑤 doesn’t belong to 𝐴.

Definition 2.10. A formal solution ℱ of ℛ is (𝜋, 𝑣)–short if, for every 𝑥, 𝐷𝑓(𝑥)𝑣 belongs
to the interior of the convex hull of Conn𝜑(𝑣) ℛ((𝑥, 𝑓(𝑥), 𝜑(𝑥)), 𝜋, 𝑣).
Lemma 2.11. Let ℱ be a formal solution of ℛ. Let 𝐾1 ⊂ 𝐸 be a compact subset, and let
𝐾0 be a compact subset of the interior of 𝐾1. Let 𝐶 be a closed subset of 𝐸. Let 𝐸′ be a
linear subspace of 𝐸 contained in ker 𝜋. Let 𝜀 be a positive real number.

Assume ℛ is open. Assume that ℱ is 𝐸′–holonomic near 𝐾0, (𝜋, 𝑣)–short, and holonomic
near 𝐶. Then there is a homotopy ℱ𝑡 such that:

1. ℱ0 = ℱ ;

2. ℱ𝑡 is a formal solution of ℛ for all 𝑡 ;

3. ℱ𝑡(𝑥) = ℱ(𝑥) for all 𝑡 when 𝑥 is near 𝐶 or outside 𝐾1 ;

4. 𝑑(bs ℱ𝑡(𝑥), bs ℱ(𝑥)) ≤ 𝜀 for all 𝑡 and all 𝑥 ;

5. ℱ1 is 𝐸′ ⊕ ℝ𝑣–holonomic near 𝐾0.

Proof. We denote the components of ℱ by 𝑓 and 𝜑. Since ℱ is short, Proposition 1.2
applied to 𝑔 ∶ 𝑥 ↦ 𝐷𝑓(𝑥)𝑣, 𝛽 ∶ 𝑥 ↦ 𝜑(𝑥)𝑣, Ω𝑥 = ℛ(ℱ(𝑥), 𝜋, 𝑣), and 𝐾 = 𝐶 ∩ 𝐾1 gives us a
smooth family of loops 𝛾 ∶ 𝐸 × [0, 1] × 𝕊1 → 𝐹 such that, for all 𝑥:

• ∀𝑡 𝑠, 𝛾𝑡
𝑥(𝑠) ∈ ℛ(ℱ(𝑥), 𝜋, 𝑣)

• ∀𝑠, 𝛾0
𝑥(𝑠) = 𝜑(𝑥)𝑣

• ̄𝛾1
𝑥 = 𝐷𝑓(𝑥)𝑣

• if 𝑥 is near 𝐶, ∀𝑡 𝑠, 𝛾𝑡
𝑥(𝑠) = 𝜑(𝑥)𝑣

Let 𝜌 ∶ 𝐸 → ℝ be a smooth cut-off function which equals one on a neighborhood of 𝐾0 and
whose support is contained in 𝐾1.

Let 𝑁 be a positive real number. Let ̄𝑓 be the corrugated map constructed from 𝑓 , 𝛾1

and 𝑁 . Proposition 2.3 ensures that, for all 𝑥,

𝐷 ̄𝑓(𝑥) = 𝐷𝑓(𝑥) + [𝛾1
𝑥(𝑁𝜋(𝑥)) − 𝐷𝑓(𝑥)𝑣] ⊗ 𝜋 + 𝑅𝑥

for some remainder term 𝑅 which is 𝜀-small and vanishes whenever 𝛾𝑥 is constant, hence
vanishes near 𝐶.

We set ℱ𝑡(𝑥) = (𝑓𝑡(𝑥), 𝜑𝑡(𝑥)) where:

𝑓𝑡(𝑥) = 𝑓(𝑥) + 𝑡𝜌(𝑥)
𝑁 ∫

𝑁𝜋(𝑥)

0
[𝛾𝑡

𝑥(𝑠) − 𝐷𝑓(𝑥)𝑣] 𝑑𝑠

and
𝜑𝑡(𝑥) = 𝜑(𝑥) + [𝛾𝑡𝜌(𝑥)

𝑥 (𝑁𝜋(𝑥)) − 𝜑(𝑥)𝑣] ⊗ 𝜋 + 𝑡𝜌(𝑥)
𝑁 𝐵𝑥.
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We now prove that ℱ𝑡 has the announced properties, starting with he obvious ones. The
fact that ℱ0 = ℱ is obvious since 𝛾0

𝑥(𝑠) = 𝜑(𝑥)𝑣 for all 𝑠.
When 𝑥 is near 𝐶, 𝐷𝑓(𝑥) = 𝜑(𝑥) since ℱ is holonomic near 𝐶. In addition, 𝛾𝑡

𝑥(𝑠) = 𝜑(𝑥)𝑣
for all 𝑠 and 𝑡, hence 𝐵𝑥 vanishes. Hence ℱ𝑡(𝑥) = ℱ(𝑥) for all 𝑡 when 𝑥 is near 𝐶.

Outside of 𝐾1, 𝜌 vanishes. Hence 𝑓𝑡(𝑥) = 𝑓(𝑥) for all 𝑡, and 𝛾𝑡𝜌(𝑥)
𝑥 (𝑠) = 𝜑(𝑥)𝑣 for all 𝑠

and 𝑡, and 𝜑𝑡(𝑥) = 𝜑(𝑥).
The distance between 𝑓(𝑥) and 𝑓𝑡(𝑥) is zero outside of 𝐾1 and 𝜀-small everywhere.
We now turn to the interesting parts. The first one is that each ℱ𝑡 is a formal solution

of ℛ. We already now that ℱ𝑡 coincides with ℱ, which is a formal solution, outside of the
compact set 𝐾1. We set

ℱ′
𝑡(𝑥) = (𝑓(𝑥), 𝜑(𝑥) + [𝛾𝑡𝜌(𝑥)

𝑥 (𝑁𝜋(𝑥)) − 𝜑(𝑥)𝑣] ⊗ 𝜋) .

Since ℛ is open, and 𝐾1 × [0, 1] is compact and ℱ𝑡 is within 𝑂 (1/𝑁) of ℱ′
𝑡, it suffices to

prove that ℱ′
𝑡 is a formal solution for all 𝑡. This is guaranteed by the definition of the slice

ℛ(ℱ(𝑥), 𝜋, 𝑣) to which 𝛾𝑡𝜌(𝑥)
𝑥 (𝑁𝜋(𝑥)) belongs.

Finally, let’s prove that ℱ1 is 𝐸′ ⊕ ℝ𝑣–holonomic near 𝐾0. Since 𝜌 = 1 near 𝐾0, we
have, for 𝑥 near 𝐾0,

𝐷𝑓1(𝑥) = 𝐷𝑓(𝑥) + [𝛾1
𝑥(𝑁𝜋(𝑥)) − 𝐷𝑓(𝑥)𝑣] ⊗ 𝜋 + 1

𝑁 𝐵𝑥,

and
𝜑1(𝑥) = 𝜑(𝑥) + [𝛾1

𝑥(𝑁𝜋(𝑥)) − 𝜑(𝑥)𝑣] ⊗ 𝜋 + 1
𝑁 𝐵𝑥.

Let 𝑝 be the projection of 𝐸 onto ker 𝜋 along 𝑣, so that Id𝐸 = 𝑝 + 𝑣 ⊗ 𝜋. We can rewrite
the above formulas as

𝐷𝑓1(𝑥) = 𝐷𝑓(𝑥) ∘ 𝑝 + 𝛾1
𝑥(𝑁𝜋(𝑥)) ⊗ 𝜋 + 1

𝑁 𝐵𝑥,

and
𝜑1(𝑥) = 𝜑(𝑥) ∘ 𝑝 + 𝛾1

𝑥(𝑁𝜋(𝑥)) ⊗ 𝜋 + 1
𝑁 𝐵𝑥.

So we see the difference is 𝐷𝑓(𝑥)∘𝑝−𝜑(𝑥)∘𝑝 which vanishes on 𝐸′ since ℱ is 𝐸′–holonomic
near 𝐾0, and vanishes on 𝑣 since 𝑝(𝑣) = 0.

2.3 Ample differential relations
Definition 2.12. A subset Ω of a real vector space 𝐸 is ample if the convex hull of each
connected component of Ω is the whole 𝐸.

Lemma 2.13. The complement of a linear subspace of codimension at least 2 is ample.

Proof. Let 𝐹 be subspace of 𝐸 with codimension at least 2. Let 𝐹 ′ be a complement sub-
space. Its dimension is at least 2 since it is isomorphic to 𝐸/𝐹 and dim(𝐸/𝐹) = codim(𝐹) ≥
2. First note the complement of 𝐹 is path-connected. Indeed let 𝑥 and 𝑦 be points outside
𝐹 . Decomposing on 𝐹 ⊕ 𝐹 ′, we get 𝑥 = 𝑢 + 𝑢′ and 𝑦 = 𝑣 + 𝑣′ with 𝑢′ ≠ 0 and 𝑣′ ≠ 0.
The segments from 𝑥 to 𝑢′ and 𝑦 to 𝑣′ stay outside 𝐹 , so it suffices to connect 𝑢′ and 𝑣′

in 𝐹 ′ ∖ {0}. If the segment from 𝑢′ to 𝑣′ doesn’t contains the origin then we are done.
Otherwise 𝑣′ = 𝜇𝑢′ for some (negative) 𝑢′. Since dim(𝐹 ′) ≥ 2 and 𝑢′ ≠ 0, there exists
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𝑓 ∈ 𝐹 ′ which is linearly independent from 𝑢′, hence from 𝑣′. We can then connect both 𝑢′

and 𝑣′ to 𝑓 by a segment away from zero.
We now turn to ampleness. The connectedness result reduces to prove that every 𝑒 in

𝐸 is in the convex hull of 𝐸 ∖ 𝐹 . If 𝑒 is not in 𝐹 then it is the convex combination of itself
with coefficient 1 and we are done. Now assume 𝑒 is in 𝐹 . The codimension assumption
guarantees the existence of a subspace 𝐺 such that dim(𝐺) = 2 and 𝐺 ∩ 𝐹 = {0}. Let
(𝑔1, 𝑔2) be a basis of 𝐺. We set 𝑝1 = 𝑒 + 𝑔1, 𝑝2 = 𝑒 + 𝑔2, 𝑝3 = 𝑒 − 𝑔1 − 𝑔2. All these points
are in 𝐸 ∖ 𝐹 and 𝑒 = 𝑝1/3 + 𝑝2/3 + 𝑝3/3.

Definition 2.14. A first order differential relation ℛ is ample if all its slices are ample.

Lemma 2.15. Let ℱ be a formal solution of ℛ. Let 𝐾1 ⊂ 𝐸 be a compact subset, and let
𝐾0 be a compact subset of the interior of 𝐾1. Assume ℱ is holonomic near a closed subset
𝐶 of 𝐸. Let 𝜀 be a positive real number.

If ℛ is open and ample then there is a homotopy ℱ𝑡 such that:

1. ℱ0 = ℱ
2. ℱ𝑡 is a formal solution of ℛ for all 𝑡 ;

3. ℱ𝑡(𝑥) = ℱ(𝑥) for all 𝑡 when 𝑥 is near 𝐶 or outside 𝐾1.

4. 𝑑(bs ℱ𝑡(𝑥), bs ℱ(𝑥)) ≤ 𝜀 for all 𝑡 and all 𝑥 ;

5. ℱ1 is holonomic near 𝐾0 ;

6. 𝑡 ↦ 𝐹𝑡 is constant near 0 and 1.

Proof. This is a straightforward induction using Lemma 2.11. Let (𝑒1, … , 𝑒𝑛) be a basis of
𝐸, and let (𝜋1, … , 𝜋𝑛) be the dual basis. Let 𝐸′

𝑖 be the linear subspace of 𝐸 spanned by
(𝑒1, … , 𝑒𝑖), for 1 ≤ 𝑖 ≤ 𝑛, and let 𝐸′

0 be the zero subspace of 𝐸. Each (𝜋𝑖, 𝑒𝑖) is a dual pair
and the kernel of 𝜋𝑖 contains 𝐸′

𝑖−1.
Lemma 2.11 allows to build a sequence of homotopies of formal solutions, each homotopy

relating a formal solution which is 𝐸′
𝑖–holonomic to one which is 𝐸′

𝑖+1–holonomic (always
near 𝐾0). The shortness condition is always satisfies because ℛ is ample. Each homotopy
starts where the previous one stopped, stay at 𝐶0 distance at most 𝜀/𝑛, and is relative to
𝐶 and the complement of 𝐾1.

It then suffices to do a smooth concatenation of theses homotopies. We first pre-compose
with a smooth map from [0, 1] to itself that fixes 0 and 1 and has vanishing derivative to all
orders at 0 and 1. Then we precompose by affine isomorphisms from [0, 1] to [𝑖/𝑛, (𝑖 + 1)/𝑛]
before joining them.
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Chapter 3

Global theory of open and
ample relations

3.1 Preliminaries
3.1.1 Localisation data
In order to conveniently globalize the theory of the previous chapter, we’ll need a number
of constructions and lemmas. By definition, manifolds are covered by open sets that are
diffeomorphic to open sets of vector spaces. But for us it is slightly more convenient to work
with smooth open embeddings of whole vector spaces. Here a smooth open embedding from
a manifold 𝑋 to a manifold 𝑌 is a smooth map 𝜑 ∶ 𝑋 → 𝑌 which is open and for which
there is some smooth 𝜓 ∶ 𝜑(𝑋) → 𝑋 such that 𝜓 ∘ 𝜑 = Id𝑋 (hence also and 𝜑 ∘ 𝜓 = Id𝜑(𝑋)).
Remember that a family of sets 𝑉𝑖 in a topological space 𝑋 is locally finite if every point of
𝑋 has a neighborhood that intersects only finitely many 𝑉𝑖. Note that in this whole text,
every manifold is paracompact by definition. In particular their topology are metrizable and
we will arbitrarily fix a compatible distance function on every manifold.

Definition 3.1. Given smooth open embeddings 𝜑 ∶ 𝑋 → 𝑀 and 𝜓 ∶ 𝑌 → 𝑁 , the update
of a map 𝑓 ∶ 𝑀 → 𝑁 , using a map 𝑔 ∶ 𝑋 → 𝑌 is the map from 𝑀 to 𝑁 sending 𝑚 to
𝜓 ∘ 𝑔 ∘ 𝜑−1(𝑚) if 𝑚 ∈ 𝜑(𝑋) and 𝑓(𝑚) otherwise.

Lemma 3.2. Let 𝜑 ∶ 𝑃 ×𝑋 → 𝑀 and 𝜓 ∶ 𝑃 ×𝑌 → 𝑁 be families of smooth open embeddings.
Let 𝐾 be a set in 𝑋 whose image in 𝑀 is closed. Let 𝑓 ∶ 𝑃 × 𝑀 → 𝑁 and 𝑔 ∶ 𝑃 × 𝑋 → 𝑌
be smooth families of maps. If for each 𝑝 and for every 𝑥 not in 𝐾, 𝑓𝑝(𝜑(𝑥)) = 𝜓(𝑔𝑝(𝑥))
then the family of maps 𝑓𝑝 updated using 𝑔𝑝 is smooth from 𝑃 × 𝑀 to 𝑁 .

Proof. Note that 𝑃 × 𝑀 = (𝑃 × 𝜑(𝑋)) ∪ (𝑃 × 𝜑(𝐾)𝑐). Both those sets are open and the
updated maps coincide with (𝑝, 𝑚) ↦ 𝜓 ∘ 𝑔𝑝 ∘ 𝜑−1(𝑚) on the first one and 𝑓 on the second
one.

Lemma 3.3. Let 𝜑 ∶ 𝑋 → 𝑀 and 𝜓 ∶ 𝑌 → 𝑁 be smooth open embeddings. Let 𝐾𝑋 and
𝐾𝑃 be compact sets in 𝑋 and 𝑃 . Let 𝑓 ∶ 𝑃 × 𝑀 → 𝑁 be a continuous family of maps such
that, for each 𝑝, 𝑓𝑝(𝜑(𝑋)) ⊂ 𝜓(𝑌 ). For every continuous function 𝜀 ∶ 𝑀 → ℝ>0, there is
some positive number 𝜂 such that, for every map 𝑔 ∶ 𝑃 × 𝑋 → 𝑌 and every (𝑝, 𝑝′, 𝑥) in
𝐾𝑃 ×𝐾𝑃 ×𝐾𝑋, 𝑑(𝑔𝑝′(𝑥), 𝜓−1 ∘𝑓𝑝 ∘𝜑(𝑥)) < 𝜂 implies 𝑑(𝑓 ′

𝑝′(𝜑(𝑥)), 𝑓𝑝(𝜑(𝑥))) < 𝜀(𝜑(𝑥)) where
𝑓 ′ is obtained by updating 𝑓 using 𝑔.
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Proof. Let 𝜀 be a positive continuous function on 𝑀 . Since 𝐾𝑋 is compact, we get a positive
number 𝜀0 such that 𝜀(𝑚) ≥ 𝜀0 for each 𝑚 in 𝐾𝑋. We denote by 𝐾1 the closed 1-thickening
of the image of 𝐾𝑃 × 𝐾𝑋 under (𝑝, 𝑥) ↦ 𝜓−1 ∘ 𝑓𝑝 ∘ 𝜑(𝑥). This is a compact set so 𝜓
is uniformly continuous on 𝐾1 and we get a positive 𝜏 such that for all 𝑥 and 𝑦 in 𝐾1,
𝑑(𝑥, 𝑦) < 𝜏 ⇒ 𝑑(𝜓(𝑥), 𝜓(𝑦)) < 𝜀0.

We now prove that 𝜂 = min(𝜏, 1) is suitable. Fix (𝑝, 𝑝′, 𝑥) in 𝐾𝑃 × 𝐾𝑃 × 𝐾𝑋 such
that 𝑑(𝑔𝑝′(𝑥), 𝜓−1 ∘ 𝑓𝑝 ∘ 𝜑(𝑥)) < 𝜂. In particular 𝑑(𝑔𝑝′(𝑥), 𝜓−1 ∘ 𝑓𝑝 ∘ 𝜑(𝑥)) < 1 hence 𝑔𝑝′(𝑥)
is in 𝐾1. Since 𝜓−1 ∘ 𝑓𝑝 ∘ 𝜑(𝑥) is also in 𝐾1 and 𝑑(𝑔𝑝′(𝑥), 𝜓−1 ∘ 𝑓 ∘ 𝜑(𝑥)) < 𝜏 , we get
𝑑(𝜓 ∘ 𝑔𝑝′(𝑥), 𝜓 ∘ 𝜓−1 ∘ 𝑓𝑝 ∘ 𝜑(𝑥)) < 𝜀0. This precisely means that 𝑑(𝑓 ′

𝑝′(𝜑(𝑥)), 𝑓𝑝(𝜑(𝑥)) < 𝜀0.
Since (𝑝, 𝑝′, 𝑥) is in 𝐾𝑃 × 𝐾𝑃 × 𝐾𝑋, this is less than 𝜀(𝑚).

In order to handle in a uniform way compact and non-compact manifolds, we will index
sequences by the family of sets ℐ𝑁 defined for each natural number 𝑁 by:

ℐ𝑁 = {ℕ if 𝑁 = 0
{0, … , 𝑁 − 1}otherwise

Lemma 3.4. Let 𝑀 be a manifold modelled on the normed space 𝐸 and (𝑉𝑗)𝑗∈𝐽 a cover
of 𝑀 by open sets. There exists some natural number 𝑁 and a family of smooth open
embeddings 𝜑 ∶ ℐ𝑁 × 𝐸 → 𝑀 such that

• for each 𝑖 there is some 𝑗 such that 𝜑𝑖(𝐸) ⊆ 𝑉𝑗,

• 𝑖 ↦ 𝜑𝑖(𝐸) is a locally-finite collection of sets in 𝑀 ,

• ⋃𝑖 𝜑𝑖(𝐵𝐸(0, 1)) = 𝑀 where 𝐵𝐸(0, 1) is the open unit ball in 𝐸.

Proof. The proof is a standard compact-exhaustion argument. Let 𝐾0, 𝐾1, 𝐾2, … be a com-
pact exhaustion of 𝑀 and define:

𝐶𝑛 = 𝐾𝑛+2 −𝐾𝑜
𝑛+1,

𝑈𝑛 = 𝐾𝑜
𝑛+3 −𝐾𝑛.

Thus:

• 𝐶𝑛 is compact,

• 𝑈𝑛 is open,

• 𝐶𝑛 ⊆ 𝑈𝑛,

• ⋃𝑛 𝐶𝑛 = 𝑀 ,

• 𝑈𝑛 ∩ 𝑈𝑚 = ∅ if |𝑛 − 𝑚| > 2.

For any 𝑦 ∈ 𝐸 and 𝑟 > 0, fix a smooth diffeomorphism 𝑓𝑦,𝑟 ∶ 𝐸 ≃ 𝐵𝐸(𝑦, 𝑟) such that 𝑓𝑦,𝑟(0) =
𝑦. For each 𝑛 and 𝑥 ∈ 𝐶𝑛, let 𝜓𝑥 be a smooth chart mapping an open neighbourhood of 𝑥
to an open set of the model space 𝐸. Writing 𝑦 = 𝜓𝑥(𝑥) ∈ 𝐸, let:

𝐵𝑛,𝑥 = 𝜓−1
𝑥 (𝐵𝐸(𝑦, 𝑟)),

𝑊𝑛,𝑥 = 𝜓−1
𝑥 (𝑓𝑦,𝑟(𝐵𝐸(0, 1))),

for some 𝑟 > 0 (which may depend on 𝑛, 𝑥) sufficiently small that:
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• 𝐵𝐸(𝑦, 𝑟) lies in the target of the chart 𝜓𝑥,

• 𝐵𝑛,𝑥 is contained in 𝑈𝑛,

• 𝐵𝑛,𝑥 is contained in 𝑉𝑗 for some 𝑗.

Note that 𝑥 ∈ 𝑊𝑛,𝑥. For each 𝑛, choose a finite subcovering of 𝐶𝑛 by 𝑊𝑛,𝑥1
, … , 𝑊𝑛,𝑥𝑙𝑛

and
define 𝜄 ⊆ ℕ × 𝑀 by:

𝜄 = ⋃
𝑛

{(𝑛, 𝑥1), … , (𝑛, 𝑥𝑙𝑛
)}.

Note that 𝜄 is countable and furthermore:

• for each 𝑖 ∈ 𝜄, there is some 𝑗 such that 𝐵𝑖 ⊆ 𝑉𝑗,

• (𝐵𝑖)𝑖∈𝜄 is locally-finite (indeed more is true: 𝐵𝑖 meets only finitely-many 𝐵𝑖′ for 𝑖, 𝑖′ ∈ 𝜄
since 𝐵𝑚,𝑥 ∩ 𝐵𝑛,𝑥′ = ∅ if |𝑛 − 𝑚| > 2),

• (𝑊𝑖)𝑖∈𝜄 covers 𝑀 .

Given 𝑖 = (𝑛, 𝑥𝑗) ∈ 𝜄, the required map 𝜙𝑖 ∶ 𝐸 → 𝑀 is just:

𝐸 ≃ 𝐵𝐸(𝑦𝑗, 𝑟) ≃ 𝐵𝑛,𝑗 ⊆ 𝑀.

Since 𝜄 is countable, it is in bijection with some ℐ𝑁 .

Definition 3.5. Let 𝑓 ∶ 𝑀 → 𝑁 be a continuous map between manifolds. A localisation
data for 𝑓 is a tuple (𝐸, 𝐹 , 𝑁, 𝜄, 𝜑, 𝜓, 𝑗) where 𝐸 and 𝐹 are normed vector spaces, 𝑁 is a
natural number, 𝜄 is a set, 𝜑 ∶ ℐ𝑁 × 𝐸 → 𝑀 and 𝜓 ∶ 𝜄 × 𝐹 → 𝑁 are families of smooth open
embeddings, and 𝑗 ∶ ℐ𝑁 → 𝜄 such that:

• ⋃𝑖 𝜑𝑖(𝐵𝐸) = 𝑀 where 𝐵𝐸 is the open unit ball in 𝐸,

• ⋃𝑖 𝜓𝑖(𝐵𝐹 ) = 𝑁 where 𝐵𝐹 is the open unit ball in 𝐹 ,

• ∀𝑖, 𝑓(𝜑𝑖(𝐸)) ⊂ 𝜓𝑗(𝑖)(𝐵𝐹 ) where 𝐵𝐹 is the open unit ball in 𝐹 ,

• 𝑖 ↦ 𝜓𝑖(𝐹) is locally finite.

Such a tuple will be denoted by (𝜑, 𝜓, 𝑗) for brevity.

Lemma 3.6. Any continuous map between manifolds has some localisation data.

Proof. The preceding lemma (applied to the trivial cover of 𝑁 by itself) gives a family of
𝜓 ∶ 𝜄′ × 𝐹 → 𝑁 of open smooth embeddings that the images of 𝐵𝐹 cover 𝑁 . We then apply
this lemma again to the cover of 𝑀 given by all 𝑓−1(𝜓𝑗(𝐵𝐹 )).

The general idea will be to apply the results of the previous chapters to all the 𝜓−1
𝑗(𝑖)∘𝑓∘𝜑𝑖 ∶

𝐸 → 𝐹 for some maps 𝑓 . However we must be careful that doing this for some 𝑖 does not
ruin the setup for the next 𝑖. This is easier to control using a distance function on the target
manifold as in Lemma 3.8 below. First we need a general lemma about a single metric
space (actually the formalized statement is stronger, it assumes only closed sets instead of
compact ones, but here we explain the easier proof which is sufficient for our purposes).
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Lemma 3.7. In a metric space 𝑋, let 𝑈 ∶ 𝜄 → 𝒫 𝑋 be a family of open subsets of 𝑋 and let
𝐾 ∶ 𝜄 → 𝒫 𝑋 be a locally-finite family of closed subsets such that 𝐾𝑖 ⊂ 𝑈𝑖 for all 𝑖. There
exists a continuous function 𝛿 ∶ 𝑋 → ℝ>0 such that:

∀𝑥 𝑥′, ∀𝑖, [𝑥 ∈ 𝐾𝑖 and 𝑑(𝑥, 𝑥′) < 𝛿(𝑥)] ⇒ 𝑥′ ∈ 𝑈𝑖.

Proof. We first note that, for any given 𝑖, compactness of 𝐾 and openness of 𝑉𝑖 give a
positive number 𝛿𝑖 such that the 𝛿𝑖-neighborhood of 𝐾𝑖 is contained in 𝑉𝑖. We now prove
that solutions exist locally. Let 𝑥 be any point in 𝑋. From the local finiteness assumption,
we get a neighborhood 𝑈 of 𝑥 such that {𝑖|𝑈 ∩ 𝑉𝑖 ≠ ∅} is finite. The constant function with
value the minimum of the corresponding 𝛿𝑖 is a solution on 𝑈 . Since the condition we put
on 𝛿 is convex, we can glue those local solutions using Lemma 1.16.

Lemma 3.8. Let 𝑓 ∶ 𝑀 → 𝑁 be a continuous map between manifolds, and let (𝜑, 𝜓, 𝑖) be
some localisation data for 𝑓. There exists a continuous positive function 𝜀 ∶ 𝑀 → ℝ>0 such
that:

∀𝑔 ∶ 𝑀 → 𝑁, [∀𝑚, 𝑑(𝑓(𝑚), 𝑔(𝑚)) < 𝜀(𝑚)] ⇒ ∀𝑖, 𝑔(𝜑𝑖(𝐸)) ⊂ 𝜓𝑗(𝑖)(𝐹).
Note that, in the preceding lemma, the conclusion 𝑔(𝜑𝑖(𝐸)) ⊂ 𝜓𝑗(𝑖)(𝐹) is weaker than

the condition 𝑓(𝜑𝑖(𝐸)) ⊂ 𝜓𝑗(𝑖)(𝐵𝐹 ) that appears in the definition of localisation data.
The condition ∀𝑚, 𝑑(𝑔(𝑚), 𝑓(𝑚)) < 𝜀(𝑚) will be abbreviated 𝑑(𝑔, 𝑓) < 𝜀.

Proof. The preceding lemma applied to the family of open sets 𝜓𝑗(𝐹) and the family of
compact sets 𝜓𝑗(𝐵𝐹 ) give a positive continuous function 𝛿 ∶ 𝑁 → ℝ such that 𝜀 = 𝛿 ∘ 𝑓 is
suitable. Indeed, assume 𝑔 ∶ 𝑀 → 𝑁 satisfies 𝑑(𝑔, 𝑓) < 𝜀 and fix some 𝑖 and some 𝑚 ∈ 𝜑𝑖(𝐸).
We know 𝑓(𝑚) ∈ 𝜓𝑗(𝑖)(𝐵𝐹 ) and our assumption on 𝑔 gives 𝑑(𝑔(𝑚), 𝑓(𝑚)) < 𝛿(𝑓(𝑚)). So
the property of 𝛿 ensures 𝑔(𝑚) ∈ 𝜓𝑗(𝑖)(𝐹).

3.1.2 Jets spaces
We now need to introduce the bundles that will replace the jet spaces 𝐸 × 𝐹 × Hom(𝐸, 𝐹)
from the previous chapter. We need a couple of fiber bundles constructions.

Definition 3.9. For every bundle 𝑝 ∶ 𝐸 → 𝐵 and every map 𝑓 ∶ 𝐵′ → 𝐵, the pull-back
bundle 𝑓∗𝐸 → 𝐵′ is defined by 𝑓∗𝐸 = {(𝑏′, 𝑒) ∈ 𝐵′ × 𝐸 | 𝑝(𝑒) = 𝑓(𝑏′)} with the obvious
projection to 𝐵′.

Definition 3.10. Let 𝐸 → 𝐵 and 𝐹 → 𝐵 be two vector bundles over some smooth manifold
𝐵. The bundle Hom(𝐸, 𝐹) → 𝐵 is the set of linear maps from 𝐸𝑏 to 𝐹𝑏 for some 𝑏 in 𝐵,
with the obvious projection map.

Set-theoretically, one can define Hom(𝐸, 𝐹) as the set of subsets 𝑆 of 𝐸 × 𝐹 such that
there exists 𝑏 such that 𝑆 ⊂ 𝐸𝑏 × 𝐹𝑏 and 𝑆 is the graph of a linear map. But the type
theory formalization will use other tricks here. The facts that really matter are listed in
Lemma 3.13 below.

Definition 3.11. Let 𝑀 and 𝑁 be smooth manifolds. Denote by 𝑝1 and 𝑝2 the projections
of 𝑀 × 𝑁 to 𝑀 and 𝑁 respectively.

The space 𝐽1(𝑀, 𝑁) of 1-jets of maps from 𝑀 to 𝑁 is 𝐻𝑜𝑚(𝑝∗
1𝑇 𝑀, 𝑝∗

2𝑇 𝑁)
We will use notations like (𝑚, 𝑛, 𝜑) to denote an element of 𝐽1(𝑀, 𝑁), but one should

keep in mind that 𝐽1(𝑀, 𝑁) is not a product, since 𝜑 lives in Hom(𝑇𝑚𝑀, 𝑇𝑛𝑁) which
depends on 𝑚 and 𝑛.

22



Definition 3.12. The 1-jet of a smooth map 𝑓 ∶ 𝑀 → 𝑁 is the map from 𝑚 to 𝐽1(𝑀, 𝑁)
defined by 𝑗1𝑓(𝑚) = (𝑚, 𝑓(𝑚), 𝑇𝑚𝑓).

The composition of a section ℱ ∶ 𝑀 → 𝐽1(𝑀, 𝑁) with the projection onto 𝑁 will
sometimes be denoted by bs ℱ∶ 𝑀 → 𝑁 and called the base map of ℱ. For any 𝑚, ℱ(𝑚)𝜑
will denote the component of ℱ(𝑚) living in Hom(𝑇𝑚𝑀, 𝑇bs ℱ(𝑚)𝑁).
Lemma 3.13. For every smooth map 𝑓 ∶ 𝑀 → 𝑁 ,

1. 𝑗1𝑓 is smooth

2. 𝑗1𝑓 is a section of 𝐽1(𝑀, 𝑁) → 𝑀
Proof. Points 2 and 3 are obvious by construction.

To show that 𝑗1𝑓 is smooth, suppose that 𝑀 is modelled over 𝐸 with charts 𝐶𝑥 ∶ 𝑀 → 𝐸
and coordinate change functions 𝐶𝑥,𝑥′ = 𝐶𝑥′𝐶−1

𝑥 ∶ 𝐸 → 𝐸 and similarly let 𝐶′
𝑦 be charts for

𝑁 . By construction of the 1-jet bundle, we need to check that for each 𝑥0 the map

𝑥 ↦ 𝑇 𝐶′
𝑓(𝑥),𝑓(𝑥0) ∘ 𝑇 (𝐶′

𝑓(𝑥)𝑓𝐶−1
𝑥 ) ∘ 𝑇𝐶𝑥0 (𝑥)(𝐶𝑥0,𝑥) ∶ 𝑀 → 𝐿(𝐸, 𝐸)

is smooth at 𝑥0 (we occasionally omit the point where the tangent maps are taken). For 𝑥
close to 𝑥0 the coordinate changes are smooth, so we can write

𝑇 𝐶′
𝑓(𝑥),𝑓(𝑥0) ∘ 𝑇 (𝐶′

𝑓(𝑥)𝑓𝐶−1
𝑥 ) ∘ 𝑇 (𝐶𝑥0,𝑥) = 𝑇𝐶𝑥0 (𝑥)(𝐶′

𝑓(𝑥),𝑓(𝑥0)𝐶′
𝑓(𝑥)𝑓𝐶−1

𝑥 𝐶𝑥0,𝑥)
= 𝑇𝐶𝑥0 (𝑥)(𝐶′

𝑓(𝑥0)𝑓𝐶𝑥0
)

This is smooth since 𝐶′
𝑓(𝑥0)𝑓𝐶𝑥0

is smooth.

Definition 3.14. A section ℱ of 𝐽1(𝑀, 𝑁) → 𝑀 is called holonomic if it is the 1–jet of
its base map. Equivalently, ℱ is holonomic if there exists 𝑓 ∶ 𝑀 → 𝑁 such that ℱ = 𝑗1𝑓,
since such a map is necessarily bs ℱ.

3.2 First order differential relations
Definition 3.15. A first order differential relation for maps from 𝑀 to 𝑁 is a subset ℛ of
𝐽1(𝑀, 𝑁).
Definition 3.16. A formal solution of a differential relation ℛ ⊂ 𝐽1(𝑀, 𝑁) is a section of
𝐽1(𝑀, 𝑁) → 𝑀 taking values in ℛ.
Definition 3.17. A homotopy of formal solutions of ℛ is a smooth family of sections
ℱ ∶ ℝ × 𝑀 → 𝐽1(𝑀, 𝑁) such that each 𝑚 ↦ ℱ(𝑡, 𝑚) is a formal solution.

The next definition will be used in cases where 𝑋 and 𝑌 are vector spaces, in order to
relate the global theory to the local one.
Definition 3.18. Given manifolds 𝑀 , 𝑋, 𝑁 and 𝑌 and smooth open embeddings 𝑔 ∶ 𝑌 → 𝑁
and ℎ ∶ 𝑋 → 𝑀 we get a transfer map 𝜓𝑔,ℎ ∶ 𝐽1(𝑋, 𝑌 ) → 𝐽1(𝑀, 𝑁) defined by

𝜓𝑔,ℎ(𝑥, 𝑦, 𝜑) = (ℎ(𝑥), 𝑔(𝑦), 𝑇𝑦𝑔 ∘ 𝜑 ∘ (𝑇𝑥ℎ)−1)
and an operator on sections which sends ℱ ∶ 𝑀 → 𝐽1(𝑀, 𝑁) to Ψ𝑔,ℎℱ ∶ 𝑋 → 𝐽1(𝑋, 𝑌 )
defined when bs ℱ(ℎ(𝑋)) ⊂ 𝑔(𝑌 ) by

Ψ𝑔,ℎℱ(𝑥) = (𝑥, 𝑔−1 ∘ bs ℱ ∘ ℎ(𝑥), (𝑇𝑔−1∘bs ℱ∘ℎ(𝑥)𝑔)−1 ∘ ℱ(ℎ(𝑥))𝜑 ∘ 𝑇𝑥ℎ).
Given a relation ℛ ⊂ 𝐽1(𝑀, 𝑁), the induced relation in 𝐽1(𝑋, 𝑌 ) is 𝜓−1

𝑔,ℎℛ.
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The following is a localization lemma needed to take advantage of all the work from the
previous chapter.

Lemma 3.19. In the situation of the previous definition, given a section ℱ ∶ 𝑀 →
𝐽1(𝑀, 𝑁):

• Ψ𝑔,ℎ(ℱ) is a smooth section of 𝐽1(𝑋, 𝑌 ).

• ℱ is holonomic on 𝑠 ⊂ ℎ(𝑋) ∩ bs ℱ−1(𝑔(𝑌 )) if and only if Ψ𝑔,ℎ(ℱ) is holonomic on
ℎ−1(𝑠).

• ℱ is a formal solution of ℛ on ℎ(𝑋) ∩ bs ℱ−1(𝑔(𝑌 ) if and only if Ψ𝑔,ℎ(ℱ) is a formal
solution of the induced relation Ψ−1

𝑔,ℎℛ.

Proof. The first point is clear by composition. In order to prove the second point while
keeping notations under control, we set 𝑓(𝑥) = 𝑔−1∘bs ℱ∘ℎ. Using this notation Ψ𝑔,ℎℱ(𝑥) =
(𝑥, 𝑓(𝑥), (𝑇𝑓(𝑥)𝑔)−1 ∘ ℱ(ℎ(𝑥))𝜑 ∘ 𝑇𝑥ℎ). We have

𝑇𝑥𝑓 = 𝑇bs ℱ∘ℎ(𝑥)(𝑔−1) ∘ 𝑇ℎ(𝑥) bs ℱ ∘ 𝑇𝑥ℎ

= (𝑇𝑓(𝑥)𝑔)−1 ∘ 𝑇ℎ(𝑥) bs ℱ ∘ 𝑇𝑥ℎ

hence Ψ𝑔,ℎℱ is holonomic at 𝑥 if and only if (𝑇𝑓(𝑥)𝑔)−1 ∘ ℱ(ℎ(𝑥))𝜑 ∘ 𝑇𝑥ℎ = (𝑇𝑓(𝑥)𝑔)−1 ∘
𝑇ℎ(𝑥) bs ℱ ∘ 𝑇𝑥ℎ and this is equivalent to ℱ(ℎ(𝑥))𝜑 = 𝑇ℎ(𝑥) bs ℱ which is the holonomy
condition for ℱ at ℎ(𝑥).

The third point is a direct consequence of the easy formula 𝜓𝑔,ℎ ∘ Ψ𝑔,ℎ(ℱ) = 𝐹 ∘ ℎ.

Definition 3.20. A first order differential relation ℛ ⊂ 𝐽1(𝑀, 𝑁) satisfies the ℎ-principle
if every formal solution of ℛ is homotopic to a holonomic one. It satisfies the parametric
ℎ-principle if, for every manifold 𝑃 and every closed set 𝐶 in 𝑃 × 𝑀 , every family ℱ ∶
𝑃 ×𝑀 → 𝐽1(𝑀, 𝑁) of formal solutions which are holonomic for (𝑝, 𝑚) near 𝐶 is homotopic
to a family of holonomic ones relative to 𝐶.

Parametricity for free
In many cases, relative parametric ℎ-principles can be deduced from relative non-parametric
ones with a larger source manifold. Let 𝑋, 𝑃 and 𝑌 be manifolds, with 𝑃 seen a parameter
space. Denote by Ψ the map from 𝐽1(𝑋 × 𝑃, 𝑌 ) to 𝐽1(𝑋, 𝑌 ) sending (𝑥, 𝑝, 𝑦, 𝜓) to (𝑥, 𝑦, 𝜓 ∘
𝜄𝑥,𝑝) where 𝜄𝑥,𝑝 ∶ 𝑇𝑥𝑋 → 𝑇𝑥𝑋 × 𝑇𝑝𝑃 sends 𝑣 to (𝑣, 0).

To any family of sections 𝐹𝑝 ∶ 𝑥 ↦ (𝑓𝑝(𝑥), 𝜑𝑝,𝑥) of 𝐽1(𝑋, 𝑌 ), we associate the section ̄𝐹
of 𝐽1(𝑋 × 𝑃, 𝑌 ) sending (𝑥, 𝑝) to ̄𝐹 (𝑥, 𝑝) ∶= (𝑓𝑝(𝑥), 𝜑𝑝,𝑥 ⊕ 𝜕𝑓/𝜕𝑝(𝑥, 𝑝)).
Lemma 3.21. In the above setup, we have:

• ̄𝐹 is holonomic at (𝑥, 𝑝) if and only if 𝐹𝑝 is holonomic at 𝑥.

• 𝐹 is a family of formal solutions of some ℛ ⊂ 𝐽1(𝑋, 𝑌 ) if and only if ̄𝐹 is a formal
solution of ℛ𝑃 ∶= Ψ−1(ℛ).

Proof. For the first part, the derivative of ̄𝐹 is 𝜕𝑓/𝜕𝑥(𝑥, 𝑝) ⊕ 𝜕𝑓/𝜕𝑝(𝑥, 𝑝), which is equal to
̄𝐹𝜑 iff 𝜕𝑓/𝜕𝑥(𝑥, 𝑝) = 𝑓𝜑.

The second part follows from Ψ ∘ ̄𝐹 (𝑥, 𝑝) = 𝐹𝑝(𝑥).
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Lemma 3.22. Let ℛ be a first order differential relation for maps from 𝑀 to 𝑁 . If, for
every manifold with boundary 𝑃 , ℛ𝑃 satisfies the ℎ-principle then ℛ satisfies the parametric
ℎ-principle. Likewise, the 𝐶0-dense and relative ℎ-principle for all ℛ𝑃 imply the parametric
𝐶0-dense and relative ℎ-principle for ℛ.

Proof. By Lemma 3.21 we can turn a formal solution of ℛ into a formal solution of ℛ𝑃 , so
we get a homotopy to a holonomic formal solution. We can turn this homotopy back to a
homotopy of the original formal solution.

3.3 The ℎ-principle for open and ample differential re-
lations

In this chapter, 𝑋 and 𝑌 are smooth manifolds and ℛ is a first order differential relation
on maps from 𝑋 to 𝑌 : ℛ ⊂ 𝐽1(𝑋, 𝑌 ). For any 𝜎 = (𝑥, 𝑦, 𝜑) in ℛ and any dual pair
(𝜆, 𝑣) ∈ 𝑇 ∗

𝑥𝑋 × 𝑇𝑥𝑋, we set:

ℛ𝜎,𝜆,𝑣 = Conn𝜑(𝑣) {𝑤 ∈ 𝑇𝑦𝑌 ; (𝑥, 𝑦, 𝜑 + (𝑤 − 𝜑(𝑣)) ⊗ 𝜆) ∈ ℛ}

where Conn𝑎 𝐴 is the connected component of 𝐴 containing 𝑎. In order to decipher this
definition, it suffices to notice that 𝜑 + (𝑤 − 𝜑(𝑣)) ⊗ 𝜆 is the unique linear map from 𝑇𝑥𝑋 to
𝑇𝑦𝑌 which coincides with 𝜑 on ker 𝜆 and sends 𝑣 to 𝑤. In particular, 𝑤 = 𝜑(𝑣) gives back
𝜑.

Of course we will want to deal with more than one point, so we will consider a vector
field 𝑉 and a 1–form 𝜆 such that 𝜆(𝑉 ) = 1 on some subset 𝑈 of 𝑋, a formal solution 𝐹
(defined at least on 𝑈), and get the corresponding ℛ𝐹,𝜆,𝑣 over 𝑈 .

One easily checks that ℛ𝜎,𝜅−1𝜆,𝜅𝑣 = 𝜅ℛ𝜎,𝜆,𝑣 hence the above definition only depends on
ker 𝜆 and the direction ℝ𝑉 .

Definition 3.23. A relation ℛ is ample if, for every 𝜎 = (𝑥, 𝑦, 𝜑) in ℛ and every (𝜆, 𝑣),
the slice ℛ𝜎,𝜆,𝑣 is ample in 𝑇𝑦𝑌 .

Lemma 3.24. Given manifolds 𝑊 , 𝑋, 𝑌 and 𝑍 and smooth open embeddings 𝑔 ∶ 𝑍 → 𝑌
and ℎ ∶ 𝑊 → 𝑋, the relation induced (in the sense of Definition 3.18) in 𝐽1(𝑊, 𝑍) by an
ample relation in 𝐽1(𝑋, 𝑌 ) is ample.

Proof. By definition, the relation induced by ℛ is 𝜓−1
𝑔,ℎℛ where 𝜓𝑔,ℎ(𝑤, 𝑧, 𝜑) = (ℎ(𝑤), 𝑔(𝑧), 𝑇𝑧𝑔∘

𝜑∘(𝑇𝑤ℎ)−1). Fix 𝜎 = (𝑤, 𝑧, 𝜑) ∈ 𝜓−1
𝑔,ℎℛ and a dual pair (𝜆, 𝑣) on 𝑇𝑤𝑊 . We set 𝐺 = 𝑇𝑧𝑔 and

𝐻 = 𝑇𝑤ℎ. Both those maps are linear isomorphisms. We compute the slice corresponding
to (𝜎, 𝜆, 𝑣):

𝜓−1
𝑔,ℎℛ(𝜎, 𝜆, 𝑣) = Conn𝜑𝑣 {𝑢 ∈ 𝑇𝑤𝑊 ∣ (𝑤, 𝑧, 𝜑 + (𝑢 − 𝜑𝑣) ⊗ 𝜆) ∈ 𝜓−1

𝑔,ℎℛ}
= Conn𝜑𝑣 {𝑢 ∈ 𝑇𝑤𝑊 ∣ (ℎ(𝑤), 𝑔(𝑧), 𝐺 ∘ (𝜑 + (𝑢 − 𝜑𝑣) ⊗ 𝜆) ∘ 𝐻−1) ∈ ℛ}
= 𝐺−1ℛ(𝜓𝑔,ℎ𝜎, 𝜆 ∘ 𝐻−1, 𝐻𝑣).

Hence the slice 𝜓−1
𝑔,ℎℛ(𝜎, 𝜆, 𝑣) is the image of a slice of ℛ under a linear isomorphism, hence

ample.

Lemma 3.25. The relation of immersions of 𝑀 into 𝑁 in positive codimension is open
and ample.
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Proof. For every 𝜎 = (𝑥, 𝑦, 𝜑) in the immersion relation ℛ, and for every dual pair (𝜋, 𝑣),
the slice ℛ(𝜎, 𝜋, 𝑣) is the set of 𝑤 which do not belong to the image of ker 𝜋 under 𝜑.
Since dim 𝑀 > dim 𝑁 , this image has codimension at least 2 in 𝑇𝑦𝑁 , and Lemma 2.13
concludes.

Theorem 3.26 (Gromov). For any manifolds 𝑋 and 𝑌 , any relation ℛ ⊂ 𝐽1(𝑋, 𝑌 ) that
is open and ample satisfies the full ℎ-principle (relative, parametric and 𝐶0-dense).

We first explain how to get rid of parameters, using the relation ℛ𝑃 for families of
solutions parametrized by 𝑃 .

Lemma 3.27. If ℛ is ample then, for any parameter space 𝑃 , ℛ𝑃 is also ample.

Proof. We fix 𝜎 = (𝑥, 𝑦, 𝜓) in ℛ𝑃 . For any 𝜆 = (𝜆𝑋, 𝜆𝑃 ) ∈ 𝑇 ∗
𝑥𝑋 × 𝑇 ∗

𝑝 𝑃 and 𝑣 = (𝑣𝑋, 𝑣𝑃 ) ∈
𝑇𝑥𝑋 × 𝑇𝑝𝑃 such that 𝜆(𝑣) = 1, we need to prove that Conv ℛ𝑃

𝜎,𝜆,𝑣 = 𝑇𝑦𝑌 . Unfolding the
definitions gives:

ℛ𝑃
𝜎,𝜆,𝑣 = Conn𝜑(𝑣) {𝑤 ∈ 𝑇𝑦𝑌 ; (𝑥, 𝑦, 𝜓 ∘ 𝜄𝑥,𝑝 + (𝑤 − 𝜓(𝑣)) ⊗ 𝜆𝑋) ∈ ℛ} .

A degenerate but easy case is when 𝜆𝑋 = 0. Then the condition on 𝑤 becomes 𝜓 ∘ 𝜄𝑥,𝑝 ∈ ℛ,
which is true by definition of ℛ𝑃 , so ℛ𝑃

𝜎,𝜆,𝑣 = 𝑇𝑦𝑌 .
We now assume 𝜆𝑋 is not zero and choose 𝑢 ∈ 𝑇𝑥𝑋 such that 𝜆𝑋(𝑢) = 1. We then have

ℛ𝑃
𝜎,𝜆,𝑣 = ℛΨ𝜎,𝜆𝑋,𝑢 +𝜓(𝑣)−𝜓∘𝜄𝑥,𝑝(𝑢). Because ℛ is ample and taking convex hull commutes

with translation, we get that Conv ℛ𝑃
𝜎,𝜆,𝑣 = 𝑇𝑦𝑌 .

Proof of Theorem 3.26. Lemmas 3.22 and 3.27 prove we can assume there are no parameters.
So we start with a single formal solution 𝐹0 of ℛ, which is holonomic near some closed subset
𝐴 ⊂ 𝑋. We also fix a positive continuous function 𝛿 on 𝑋 and we want to build a homotopy
of formal solutions starting at 𝐹0 relative to 𝐴 with base map staying at distance at most 𝛿
from the base map of 𝐹0 and ending at a holonomic solution.

We apply Lemma 3.6 to get some localisation data (𝜑∶ ℐ𝑁 ×𝐸 → 𝒫 𝑋, 𝜓∶ 𝜄×𝐸′ → 𝒫 𝑌 , 𝑗)
for bs 𝐹0 ∶ 𝑋 → 𝑌 . Lemma 3.8 then provides a continuous function 𝜀 ∶ 𝑋 → ℝ>0 such that
every function 𝑔 with 𝑑(bs 𝐹0, 𝑔) < 𝜀 sends each 𝜑𝑖(𝐸) into 𝜓𝑗(𝑖)(𝐸′). We denote by 𝜏 the
positive continuous function min(𝛿, 𝜀).

We then use the inductive construction of homotopies provided by Lemma B.6 starting
with 𝐹0 and using the following local predicates. On maps 𝐹 from 𝑋 to 𝐽1(𝑋, 𝑌 ) we use the
background predicate 𝑃0 asserting that 𝐹 is a smooth section of 𝐽1(𝑋, 𝑌 ) → 𝑋 that takes
values in 𝑅, coincides with 𝐹0 near 𝐴 and satisfies 𝑑(bs 𝐹, bs 𝐹0) < 𝜏 . The background
predicate for maps from ℝ × 𝑋 to 𝐽1(𝑋, 𝑌 ) is simply smoothness and the target local
predicate 𝑃1 on maps from 𝑋 to 𝐽1(𝑋, 𝑌 ) is being holonomic. We use the family of sets
𝑈 ∶ 𝑖 ↦ 𝜑𝑖(𝐸) and 𝐾 ∶ 𝑖 ↦ 𝜑𝑖(�̄�𝐸).

In order to check the induction assumption from Lemma B.6, we fix some 𝑖 in ℐ𝑁 , and
some formal solution 𝐹 which coincides with 𝐹0 near 𝐴 and such that 𝑑(bs 𝐹0, bs 𝐹) < 𝜏 .
We assume that 𝐹 is holonomic near ⋃𝑗<𝑖 𝐾𝑗. We need to build a smooth homotopy of
formal solutions starting at 𝐹 which coincide with 𝐹0 near 𝐴, coincide with 𝐹 outside 𝑈𝑖,
have base map at distance less than 𝜏 from bs 𝐹0 and end at a formal solution which is
holonomic near ⋃𝑗≤𝑖 𝐾𝑗. In addition this homotopy must be time-independent for time near
(−∞, 0] and [1, +∞).

Of course this homotopy comes from the local ℎ-principle we proved in Lemma 2.15. The
first key observation allowing to apply that lemma is that 𝑑(bs 𝐹, bs 𝐹0) < 𝜏 ≤ 𝜀 hence bs 𝐹
sends sends 𝜑𝑖(𝐸) into 𝜓𝑗(𝑖)(𝐸′).
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Definition 3.18 then turns 𝐹 into a section ℱ of 𝐽1(𝐸, 𝐸′). According to Lemma 3.19,
ℱ is a formal solution of the relation ℛ𝑖 induced by ℛ in 𝐽1(𝐸, 𝐸′) via 𝜑𝑖 and 𝜓𝑗(𝑖), ℱ is
relative to 𝜑−1

𝑖 (𝐴) and ℱ is holonomic near 𝜑−1
𝑖 (𝐴 ∪ ⋃𝑗<𝑖 𝜑𝑗(�̄�𝐸)).

The homotopy 𝐻 will be constructed by updating 𝐹 using some homotopy ℋ of sections
of 𝐽1(𝐸, 𝐸′) with support in the closed ball 2𝐵𝐸 and time independent for 𝑡 near (−∞, 0] ∪
[1, +∞) (here by support we mean the closure of the set of points where ℋ𝑡 differs from
ℱ). In order to ensure 𝑑(bs 𝐹0, bs 𝐻𝑡) < 𝜏 for all 𝑡, it suffices to ensure that, for each
𝑥 ∈ 𝜑𝑖(2�̄�𝐸) and 𝑡 ∈ [0, 1], 𝑑(bs 𝐻𝑡(𝑥), bs 𝐹(𝑥)) < 𝜏(𝑥) − 𝑑(bs 𝐹(𝑥), bs 𝐹0(𝑥)). The latter
will hold as soon as, for all 𝑒 and 𝑡, ‖ bs ℋ𝑡(𝑒) − bs ℱ(𝑒)‖ < 𝜂 for some positive 𝜂 given by
Lemma 3.3 (applied to 𝑃 = ℝ, 𝑀 and 𝑁).

Theorem 3.28 (Smale 1958). There is a homotopy of immersions of 𝕊2 into ℝ3 from the
inclusion map to the antipodal map 𝑎 ∶ 𝑞 ↦ −𝑞.

Proof. We denote by 𝜄 the inclusion of 𝕊2 into ℝ3. We set 𝑗𝑡 = (1 − 𝑡)𝜄 + 𝑡𝑎. This is a
homotopy from 𝜄 to 𝑎 (but not an immersion for 𝑡 = 1/2). Using the canonical trivialization
of the tangent bundle of ℝ3, we can set, for (𝑞, 𝑣) ∈ 𝑇 𝕊2, 𝐺𝑡(𝑞, 𝑣) = Rot𝜋𝑡

𝑂𝑞(𝑣), the rotation
around axis 𝑂𝑞 with angle 𝜋𝑡. The family 𝜎 ∶ 𝑡 ↦ (𝑗𝑡, 𝐺𝑡) is a homotopy of formal immersions
relating 𝑗1𝜄 to 𝑗1𝑎. It is homotopic by reparametrization to a homotopy of formal immersions
relating 𝑗1𝜄 to 𝑗1𝑎 which are holonomic for 𝑡 near the 0 and 1.

The above theorem ensures this family is homotopic, relative to 𝑡 = 0 and 𝑡 = 1, to a
family of holonomic formal immersions, ie a family 𝑡 ↦ 𝑗1𝑓𝑡 with 𝑓0 = 𝜄, 𝑓1 = 𝑎, and each
𝑓𝑡 is an immersion.
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Appendix A

Local sphere eversion

The local theory of Chapter 2 is already enough to deduce Smale’s sphere eversion theorem,
although it is less natural than going through the general results of Chapter 3. The goal of
this appendix is to explain how to do so. In this section 𝐸 denote a finite dimensional real
vector space equipped with an inner product. Later we will assume it is 3-dimensional. We
denote by 𝕊 the unit sphere in 𝐸.

Although we want to study immersions of 𝕊 into 𝐸, we want to work only with functions
defined on the whole 𝐸. So we introduce a slightly artificial relation. We denote by 𝐵 the
open ball with radius 9/10 around the origin in 𝐸 and set:

ℛ ∶= {(𝑥, 𝑦, 𝜑) ∈ 𝐽1(𝐸, 𝐸) | 𝑥 ∉ 𝐵 ⇒ 𝜑|𝑥⊥ is injective}.
Of course solutions of this relation restrict to immersions of 𝕊.

Lemma A.1. The relation ℛ above is open.

Proof. The main task is to fix 𝑥0 ∉ 𝐵 and 𝜑0 ∈ 𝐿(𝐸, 𝐸) which is injective on 𝑥⟂
0 and prove

that, for every 𝑥 close to 𝑥0 and 𝜑 close to 𝜑0, 𝜑 is injective on 𝑥⟂. This is a typical situation
where geometric intuition makes it feel like there is nothing to prove.

One difficulty is that the subspace 𝑥⟂ moves with 𝑥. We reduce to a fixed subspace
by considering the restriction to 𝑥⟂

0 of the orthogonal projection onto 𝑥⟂. One can check
this is an isomorphism as long as 𝑥 is not perpendicular to 𝑥0. More precisely, we consider
𝑓 ∶ 𝐽1(𝐸, 𝐸) → ℝ × 𝐿(𝑥⟂

0 , 𝐸) which sends (𝑥, 𝑦, 𝜑) to (⟨𝑥0, 𝑥⟩, 𝜑 ∘ pr𝑥⟂ ∘𝑗0) where 𝑗0 is the
inclusion of 𝑥⟂

0 into 𝐸. The set 𝑈 of injective linear maps is open in 𝐿(𝑥⟂
0 , 𝐸) and the

map 𝑓 is continuous hence the preimage of {0}𝑐 × 𝑈 is open. This is good enough for us
because injectivity of 𝜑 ∘ pr𝑥⟂ ∘𝑗0 implies injectivity of 𝜑 on the image of pr𝑥⟂ ∘𝑗0 which is
𝑥⟂ whenever ⟨𝑥0, 𝑥⟩ ≠ 0.

Lemma A.2. The relation ℛ above is ample.

Proof. The core fact here is that if one fixes vector spaces 𝐹 and 𝐹 ′, a dual pair (𝜋, 𝑣) on
𝐹 and an injective linear map 𝜑 ∶ 𝐹 → 𝐹 ′ then the updated map Υ𝑝 (𝜑, 𝑤) is injective
if and only if 𝑤 is not in 𝜑(ker 𝜋). First we assume Υ𝑝 (𝜑, 𝜑(𝑢)) is injective for some 𝑢 in
𝜑(ker 𝜋) and derive a contradiction. We have Υ𝑝 (𝜑, 𝜑(𝑢)) 𝑣 = 𝜑(𝑢) by the general definition
of updating and also Υ𝑝 (𝜑, 𝜑(𝑢)) 𝑢 = 𝜑(𝑢) since 𝑢 is in ker 𝜋. Hence injectivity of 𝜑 ensure
𝑢 = 𝑣, which is absurd since 𝜋(𝑢) = 0 and 𝜋(𝑣) = 1. Conversely assume 𝑤 is not in 𝜑(ker 𝜋)
and let us prove Υ𝑝 (𝜑, 𝑤) is injective. Assume 𝑥 is in the kernel of Υ𝑝 (𝜑, 𝑤). Decompose
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𝑥 = 𝑢+𝑡𝑣 with 𝑢 ∈ ker 𝜋 and 𝑡 a real number. We have Υ𝑝 (𝜑, 𝑤) (𝑥) = 𝜑(𝑢)+𝑡𝑤. Hence our
assumption on 𝑥 implies 𝑡 vanishes otherwise we would have 𝑤 = −𝑡−1𝜑(𝑢) contradicting
that 𝑤 isn’t in 𝜑(ker 𝜋). This vanishing and the assumption on 𝑥 then imply 𝜑(𝑢) = 0.
Since 𝜑 is injective we conclude that 𝑢 = 0 and finally 𝑥 = 0.

We now turn to ℛ. It suffices to prove that for every 𝜎 = (𝑥, 𝑦, 𝜑) ∈ ℛ and every dual
pair 𝑝 = (𝜋, 𝑣) on 𝐸, the slice ℛ(𝜎, 𝑝) is ample. If 𝑥 is in 𝐵 then ℛ(𝜎, 𝑝) is the whole 𝐸
which is obviously ample. So we assume 𝑥 is not in 𝐵. Since 𝜎 is in ℛ, 𝜑 is injective on
𝑥⟂. The slice is the set of 𝑤 such that Υ𝑝 (𝜑, 𝑤) is injective on 𝑥⟂. Assume first ker 𝜋 = 𝑥⟂.
Then Υ𝑝 (𝜑, 𝑤) coincides with 𝜑 on 𝑥⟂ hence the slice is the whole 𝐸. Assume now that
ker 𝜋 ≠ 𝑥⟂. The slice is not very easy to picture in this case. But one should remember that,
up to affine isomorphism, the slice depends only on ker 𝜋. More specifically, if we keep 𝜋 but
change 𝑣 then the slice is simply translated in 𝐸. Here we replace 𝑣 by the projection on 𝑥⟂

of the vector dual to 𝜋 rescaled to keep the property 𝜋(𝑣) = 1. What has been gained is that
we now have 𝑣 ∈ 𝑥⟂ and 𝑥⟂ = (𝑥⟂ ∩ ker 𝜋) ⊕ ℝ𝑣. Since 𝜑 is injective on 𝑥⟂, 𝜑(𝑥⟂ ∩ ker 𝜋)
is a hyperplane in 𝑥⟂ and Υ𝑝 (𝜑, 𝑤) is injective on 𝑥⟂ if and only if 𝑤 is in the complement
of 𝜑(𝑥⟂ ∩ ker 𝜋) according to the core fact above. Since it is an hyperplane in 𝑥⟂, it has
codimension at least 2 in 𝐸 hence its complement is ample.

Theorem A.3 (Smale 1958). There is a homotopy of immersion of 𝕊2 into ℝ3 from the
inclusion map to the antipodal map 𝑎∶ 𝑞 ↦ −𝑞.

Proof. We denote by 𝜄 the inclusion of 𝕊2 into ℝ3. We set 𝑗𝑡 = (1 − 𝑡)𝜄 + 𝑡𝑎. This is a
homotopy from 𝜄 to 𝑎 (but not an immersion for 𝑡 = 1/2). Using the canonical trivialization
of the tangent bundle of ℝ3, we can set, for (𝑞, 𝑣) ∈ 𝑇 𝕊2, 𝐺𝑡(𝑞, 𝑣) = Rot𝜋𝑡

𝑂𝑞(𝑣), the rotation
around axis 𝑂𝑞 with angle 𝜋𝑡. The family 𝜎 ∶ 𝑡 ↦ (𝑗𝑡, 𝐺𝑡) is a homotopy of formal immersions
relating 𝑗1𝜄 to 𝑗1𝑎. Those formal solutions are holonomic when 𝑡 is zero or one, so we can
reparametrize the family to make such it is holonomic when 𝑡 is close to zero or one. Then
we can extend it to a homotopy of formal solutions of ℛ using a suitable cut-off ensuring
smoothness near the origin. The relation ℛ is ample according to Lemma A.2 and then
Lemma 3.21 ensures its 1-parameter version ℛℝ is also ample. The relation ℛ is open
according to Lemma A.1 hence ℛℝ is also ample. So we can use Lemma 2.15 to deform our
family of formal solutions into a holonomic one.
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Appendix B

From local to global

In this chapter, we gather some topological preliminaries allowing to build global objects
from local ones. This is usually not discussed in informal expositions where such arguments
are either implicit or interspersed with more specific arguments.

We first need to discuss how to build a function having everywhere some local properties
from a sequence of functions having those properties on bigger and bigger parts of the source
space. We actually want to also accommodate finite sequences so we start with a definition
of the source of our sequences.

Definition B.1. For every natural number 𝑁 we set

ℐ𝑁 = {ℕ if 𝑁 = 0
{0, … , 𝑁 − 1}otherwise

On each ℐ𝑁 we use the obvious linear ordering. In particular there is no maximal element
when 𝑁 = 0 and 𝑁 − 1 is maximal if 𝑁 is positive. The successor function 𝑆 ∶ ℐ𝑁 → ℐ𝑁 is
the function sending 𝑛 to 𝑛 + 1 unless 𝑛 is maximal, in which case 𝑆(𝑛) = 𝑛.

Our first lemma gives a criterion ensuring that a sequence of functions is locally ultimately
constant hence has a limit that locally ultimately agrees with the elements of the sequence.
Remember that a family of sets 𝑉𝑛 in a topological space 𝑋 is locally finite if every point of
𝑋 has a neighborhood that intersects only finitely many 𝑉𝑛.

Lemma B.2. Let 𝑋 be a topological space and let 𝑌 be any set. Let 𝑓 be a sequence of
functions from 𝑋 to 𝑌 indexed by ℐ𝑁 for some 𝑁 . Let 𝑉 be a family of subsets of 𝑋 indexed
by ℐ𝑁 such that, for every non-maximal 𝑛, 𝑓𝑆(𝑛) coincides with 𝑓𝑛 outside 𝑉𝑆(𝑛). If 𝑉 is
locally finite then there exists 𝐹 ∶ 𝑋 → 𝑌 such that, for every 𝑥 and every sufficiently large
𝑛, 𝐹 coincides with 𝑓𝑛 near 𝑥.

Proof. The assumption that 𝑉 is locally finite gives, for every 𝑥 in 𝑋, a subset 𝑈𝑥 of 𝑋 such
that 𝑈𝑥 is a neighborhood of 𝑥 and intersects only finite many 𝑉𝑛’s. In particular we can
find an upper bound 𝑛0(𝑥) of the set of indices 𝑛 in ℐ𝑁 such that 𝑉𝑛 intersects 𝑈𝑋. Since,
for every non-maximal 𝑛, 𝑓𝑆(𝑛) coincides with 𝑓𝑛 outside 𝑉𝑆(𝑛), we get by induction that,
for all 𝑛 ≥ 𝑛0(𝑥), 𝑓𝑛 coincides with 𝑓𝑛0(𝑥) on 𝑈𝑥.

We now define 𝐹 as 𝑥 ↦ 𝑓𝑛0(𝑥)(𝑥). We claim that, for every 𝑥, 𝐹 coincides with 𝑓𝑛 on
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𝑈𝑥 as soon as 𝑛 is at least 𝑛0(𝑥). Indeed let us fix 𝑥 and 𝑛 ≥ 𝑛0(𝑥) and 𝑦 ∈ 𝑈𝑥. We have

𝑓𝑛(𝑦) = 𝑓𝑛0(𝑥)(𝑦) since 𝑛 ≥ 𝑛0(𝑥) and 𝑦 ∈ 𝑈𝑥

= 𝑓max(𝑛0(𝑥),𝑛0(𝑦))(𝑦) since max(𝑛0(𝑥), 𝑛0(𝑦)) ≥ 𝑛0(𝑥) and 𝑦 ∈ 𝑈𝑥

= 𝑓𝑛0(𝑦)(𝑦) since max(𝑛0(𝑥), 𝑛0(𝑦)) ≥ 𝑛0(𝑦) and 𝑦 ∈ 𝑈𝑦

= 𝐹(𝑦) by definition of 𝐹.

In the preceding lemma, the limit function 𝐹 inherits all local properties of the elements
of the sequence. In order to make this precise, we need the language of germs of functions.
One can define germs with respect to any filter but we will need only the case of neighborhood
filters : two functions 𝑓 and 𝑔 define the same germ at some point 𝑥 if they coincide near 𝑥.

Definition B.3. Let 𝑋 be a topological space, 𝑥 a point in 𝑋 and 𝑌 a set. A germ of
function from 𝑋 to 𝑌 at 𝑥 is an element of the quotient (𝑋 → 𝑌 )𝑥 of the set of functions
from 𝑋 to 𝑌 by the relation 𝑓 ∼ 𝑔 if 𝑓 and 𝑔 coincide near 𝑥. The image of a function 𝑓
in this quotient will be denoted by [𝑓]𝑥.

A local predicate on functions from 𝑋 to 𝑌 is a family 𝑃 of predicates on the germ set
(𝑋 → 𝑌 )𝑥 for every 𝑥 in 𝑋. We say that a function 𝑓 satisfies 𝑃 at 𝑥 if 𝑃 [𝑓]𝑥 holds, and
𝑓 satisfies 𝑃 if it satisfies 𝑃 at every point.

For instance if 𝑌 is also equipped with a topology then continuity is (equivalent to) a
local predicate on functions from 𝑋 to 𝑌 since a function is continuous if and only if it is
continuous at every point 𝑥 and this condition only depends on the germ of the function at
𝑥.

We also need to build local predicates by localizing some local predicates near some
subsets.

Definition B.4. Let 𝑋 be a topological space, 𝐴 a subset of 𝑋, 𝑌 a set and 𝑃 a local
predicate on functions from 𝑋 to 𝑌 . The restriction of 𝑃 to 𝐴 is the local predicate 𝑃|𝐴
defined by the constraint that a function 𝑓 satisfies 𝑃|𝐴 at 𝑥 if 𝑥 ∈ 𝐴 implies that 𝑓 satisfies
𝑃 near 𝑥.

Note the above definition hides a little lemma asserting that the obtained predicate is
indeed local. An even smaller lemma asserts that a function satisfies 𝑃|𝐴 if and only if it
satisfies 𝑃 at each point near 𝐴.

In the next lemma, there are three predicates or families of predicates. The local pred-
icate 𝑃0 is satisfied by every function appearing in the lemma, it could be a continuity or
smoothness constraint. The family of local predicates 𝑃1 is the main constraint and the goal
is to build a function satisfying all of them. The family of predicates 𝑃2 plays an auxiliary
role, it does not have to be local, does not appear in the conclusion and is only used to bring
more flexibility in the main inductive assumption. One can read “𝑓 satisfies 𝑃 𝑖

2” as “𝑓 can
be improved in 𝑈𝑖”.

Lemma B.5. Let 𝑋 be a topological space and 𝑌 be any set. Let 𝑈 be a locally finite family
of subsets of 𝑋 indexed by some ℐ𝑁 . Let 𝑃0 be a local predicate on functions from 𝑋 to
𝑌 , let 𝑖 ↦ 𝑃 𝑖

1 be a family of such predicates, and let 𝑖 ↦ 𝑃 𝑖
2 be a family of predicates on

functions from 𝑋 to 𝑌 , all families being indexed by ℐ𝑁 . Assume that

• there exists 𝑓0 ∶ 𝑋 → 𝑌 satisfying 𝑃0 and 𝑃 0
2 ;
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• for every 𝑖 in ℐ𝑁 and every 𝑓 ∶ 𝑋 → 𝑌 satisfying 𝑃0, 𝑃 𝑖
2 and every 𝑃 𝑗

1 for 𝑗 < 𝑖, there
exists a function 𝑓 ′ ∶ 𝑋 → 𝑌 which coincides with 𝑓 outside 𝑈𝑖 and satisfies 𝑃0 and
every 𝑃 𝑗

1 for 𝑗 ≤ 𝑖 as well as 𝑃 𝑆(𝑖)
2 unless 𝑖 is maximal.

Then there exists 𝑓 ∶ 𝑋 → 𝑌 which satisfies 𝑃0 and all 𝑃 𝑖
1’s.

Proof. The main assumption from the lemma allows to build by induction a sequence 𝑓 of
functions from 𝑋 to 𝑌 indexed by ℐ𝑁 such that, for every 𝑛 ∈ ℐ𝑁 ,

• 𝑓𝑛 satisfies 𝑃0

• for every 𝑖 ≤ 𝑛, 𝑓𝑛 satisfies 𝑃 𝑖
1.

• 𝑓𝑆(𝑛) satisfies 𝑃2 unless 𝑛 is maximal.

• 𝑓𝑆(𝑛) coincides with 𝑓𝑛 outside 𝑈𝑆(𝑛).

Note that the first term of this sequence isn’t 𝑓0 but the function obtained by applying the
induction assumption to 𝑓0.

The preceding lemma applied to this sequence gives a map 𝑓 which locally coincides with
every element which is far enough in the sequence. Let 𝑥 be a point in 𝑋. Let 𝑛 be large
enough to ensure 𝑓 coincides with 𝑓𝑛 near 𝑥. By definition this means [𝑓]𝑥 = [𝑓𝑛]𝑥 and we
know 𝑃0[𝑓𝑛]𝑥 hence we get 𝑃0[𝑓]𝑥. Now fix also 𝑛 in ℐ𝑁 . Let 𝑛′ be large enough to be larger
than 𝑛 and such that [𝑓]𝑥 = [𝑓𝑛′ ]𝑥. Since 𝑛′ ≥ 𝑛 we have 𝑃 𝑛

1 [𝑓𝑛′ ]𝑥 hence 𝑃 𝑛
1 [𝑓]𝑥.

Next we will need a version of the above lemma building a homotopy of maps. In this
version, 𝑃0 is still a predicate such as continuity satisfied by all maps from 𝑋 to 𝑌 entering
the discussion. Then 𝑃 ′

0 is analogous but for maps from ℝ × 𝑋 to 𝑌 , and it will come
with some affine invariance assumption ensuring its compatibility with concatenation of
homotopies. Instead of having a completely general family of local predicates 𝑃 𝑖

1, we fix a
single local predicate 𝑃1 but it will be required to hold only near some subset 𝐾𝑖 (as in
Definition B.4).

Homotopies of maps from 𝑋 to 𝑌 are usually meant to be continuous maps from [0, 1]×𝑋
to 𝑌 . In a differential topology context, one requires smoothness and in order to be able
to easily concatenate homotopies, it is very convenient to add the assumptions that those
maps are independent of the time variable 𝑡 ∈ [0, 1] when 𝑡 is close to 0 or 1. Especially
in a formalization context, it is even more convenient to assume homotopies are defined on
ℝ × 𝑋, and time independent near (−∞, 0] × 𝑋 and [1, +∞) × 𝑋. Continuity or smoothness
don’t appear in the following abstract lemma where they are replaced by arbitrary local
predicates.

Lemma B.6. Let 𝑋 be a topological space and 𝑌 be any set. Let 𝑃0 and 𝑃1 be local
predicates on maps from 𝑋 to 𝑌 . Let 𝑃 ′

0 be a local predicate on maps from ℝ × 𝑋 → 𝑌 .
Assume that for every 𝑎, 𝑏 and 𝑡 in ℝ, every 𝑥 in 𝑋 and every 𝑓 ∶ ℝ × 𝑋 → 𝑌 , if 𝑓 satisfies
𝑃2 at (𝑎𝑡 + 𝑏, 𝑥) then (𝑡, 𝑥) ↦ 𝑓(𝑎𝑡 + 𝑏, 𝑥) satisfies 𝑃 ′

0 at (𝑡, 𝑥). Let 𝑓0 ∶ 𝑋 → 𝑌 be a function
satisfying 𝑃0 and such that (𝑡, 𝑥) ↦ 𝑓0(𝑥) satisfies 𝑃 ′

0.
Let 𝐾 and 𝑈 be families of subsets of 𝑋 indexed by some ℐ𝑁 . Assume that 𝑈 is locally

finite and 𝐾 covers 𝑋.
Assume that, for every 𝑖 in ℐ𝑁 and every 𝑓 ∶ 𝑋 → 𝑌 satisfying 𝑃0 and satisfying 𝑃1 on

⋃𝑗<𝑖 𝐾𝑗, there exists 𝐹 ∶ ℝ × 𝑋 → 𝑌 such that

• for all 𝑡, 𝐹(𝑡, ⋅) satisfies 𝑃0
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• 𝐹 satisfies 𝑃 ′
0

• 𝐹(1, ⋅) satisfies 𝑃1 on ⋃𝑗≤𝑖 𝐾𝑗

• 𝐹(𝑡, 𝑥) = 𝑓(𝑥) whenever 𝑥 is not in 𝑈𝑖 or 𝑡 is near (−∞, 0]
• 𝐹(𝑡, 𝑥) = 𝐹(1, 𝑥) whenever 𝑡 is near [1, +∞).

Then there exists 𝐹 ∶ ℝ × 𝑋 → 𝑌 such that

• for all 𝑡, 𝐹(𝑡, ⋅) satisfies 𝑃0

• 𝐹 satisfies 𝑃 ′
0

• 𝐹(0, ⋅) = 𝑓0

• 𝐹(1, ⋅) satisfies 𝑃1.

Proof. Carefully checking all details is a bit technical but the strategy is as follows. We fix
an increasing sequence 𝑇 ∶ ℐ𝑁 → [0, 1) starting at 0, say 𝑖 ↦ 1 − 1/2𝑖. We want to build a
sequence of homotopies 𝐹𝑖 ∶ ℝ × 𝑋 → 𝑌 where each 𝐹𝑖 is time-independent on [𝑇𝑖, +∞) × 𝑋
and, assuming 𝑖 isn’t maximal, 𝐹𝑆(𝑖) is built from 𝐹𝑖 by applying the induction assumption
to 𝐹𝑖(𝑇𝑖, ⋅) and rescaling the obtained homotopy by the affine map sending [0, 1] to [𝑇𝑖, 𝑇𝑆(𝑖)].

Hence we want to apply Lemma B.5 with source space �̂� = ℝ × 𝑋. We use as the
background local predicate ̂𝑃0 at (𝑡, 𝑥) the constraint on a function 𝐹 that 𝐹(𝑡, ⋅) satisfies
𝑃0 at 𝑥 and 𝑃 ′

0 at (𝑡, 𝑥) and if 𝑡 = 0 then 𝐹(𝑡, 𝑥) = 𝑓0(𝑥). As the target family of local
predicates ̂𝑃1 we use for every 𝑖 ∈ ℐ𝑁 the constraint on 𝐹 at (𝑡, 𝑥) that if 𝑡 = 1 and 𝑥 is
near 𝐾𝑖 then 𝐹(𝑡, ⋅) should satisfy 𝑃2 at 𝑥. As the auxiliary family of predicates ̂𝑃2 at index
𝑖 we use the constraint of being time-independent on [𝑇𝑖, +∞) × 𝑋.

In order to explain how the induction assumption of the current lemma implies the
induction assumption of Lemma B.5, we fix 𝑖 ∈ ℐ𝑁 and a map 𝐹 ∶ ℝ × 𝑋 → 𝑌 that
satisfies ̂𝑃0, is time-independent on [𝑇𝑖, +∞) × 𝑋 and satisfies ̂𝑃 𝑗

1 for all 𝑗 < 𝑖. By this
last requirement and the time independence property, we get that 𝐹(𝑇𝑖, ⋅) satisfies 𝑃1 near
⋃𝑗<𝑖 𝐾𝑗. Our induction assumption applied to 𝐹(𝑇𝑖, ⋅) then gives 𝐹 ′ ∶ ℝ × 𝑋 → 𝑌 such that

• for all 𝑡, 𝐹 ′(𝑡, ⋅) satisfies 𝑃0

• 𝐹 ′ satisfies 𝑃 ′
0

• 𝐹 ′(1, ⋅) satisfies 𝑃1 on ⋃𝑗≤𝑖 𝐾𝑗

• 𝐹 ′(𝑡, 𝑥) = 𝑓(𝑥) whenever 𝑥 is not in 𝑈𝑖 or 𝑡 is near (−∞, 0]
• 𝐹 ′(𝑡, 𝑥) = 𝐹(1, 𝑥) whenever 𝑡 is near [1, +∞).

As the new map required by the inductive assumption of Lemma B.5, we pick

𝐹 ″ ∶ (𝑡, 𝑥) ↦ {𝐹(𝑡, 𝑥) if 𝑡 ≤ 𝑇𝑖
𝐹 ′ ((𝑡 − 𝑇𝑖)/(𝑇𝑆(𝑖) − 𝑇𝑖), 𝑥) if 𝑡 > 𝑇𝑖

Fully checking that 𝐹 ″ is suitable is fairly technical but mostly straightforward. Care is
required in particular to check that 𝐹 ″ coincides with 𝐹 near (𝑇𝑖, 𝑥) for every 𝑥. This uses
both the fact that 𝐹 is time-independent on [𝑇𝑖, +∞) × 𝑋 and that 𝐹 ′ is time-independent
near (−∞, 0] × 𝑋 hence in particular near (0, 𝑥).
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In a different direction, we need a version of Lemma B.5 where we do not fix any family
of subsets of the source space, but simply want to derive existence of a function satisfying
some local predicates from the assumptions of existence of local solution and the ability to
patch solutions. This requires putting a lot more constraints on the source topological space
in order to use the following classical result.

Lemma B.7. Let 𝑋 be a metrizable locally compact second countable topological space. Let
𝐶 be a closed subset in 𝑋. Let 𝑃 be a non-decreasing predicate on subsets of 𝑋 (meaning
that if 𝑈 ⊂ 𝑉 and 𝑉 satisfies 𝑃 then so does 𝑈). Assume the empty set satisfies 𝑃 and every
point in 𝐶 has a neighborhood in 𝑋 satisfying 𝑃 . Then there exist sequences of subsets 𝐾
and 𝑊 indexed by natural numbers such that 𝐾 covers 𝐶, 𝑊 is locally finite and, for every
𝑛 :

• 𝐾𝑛 is compact

• 𝑊𝑛 is open

• 𝐾𝑛 ⊂ 𝑊𝑛

• 𝑊𝑛 satisfies 𝑃 .

Proof. This is a classical result.

In the next lemma, 𝑃0 is again a background local predicate satisfied by all maps entering
the discussion, and 𝑃1 is the main target local predicate. We also use an extra predicate
𝑃 ′

0 that enters the patching assumption in an asymmetric way and will allows to deduce a
relative version of the lemma.

Lemma B.8. Let 𝑋 a second countable locally compact metrizable topological space. Let
𝑃0, 𝑃 ′

0 and 𝑃1 be local predicates on function from 𝑋 to a set 𝑌 . Let 𝑓0 ∶ 𝑋 → 𝑌 be a
function satisfying 𝑃0 and 𝑃 ′

0. Assume that

• For every 𝑥 in 𝑋, there exists a function 𝑓 ∶ 𝑋 → 𝑌 which satisfies 𝑃0 and satisfies
𝑃1 near 𝑥.

• For every closed subsets 𝐾1 and 𝐾2 of 𝑋 and every open subsets 𝑈1 and 𝑈2 containing
𝐾1 and 𝐾2, for every function 𝑓1 and 𝑓2 satisfying 𝑃0, if 𝑓1 satisfies 𝑃 ′

0 and satisfies
𝑃1 on 𝑈1 and if 𝑓2 satisfies 𝑃1 on 𝑈2 then there exists 𝑓 which satisfies 𝑃0 and 𝑃 ′

0,
and satisfies 𝑃1 near 𝐾1 ∪ 𝐾2 and coincides with 𝑓1 near 𝐾1 ∪ 𝑈𝑐

2 .

Then there exists 𝑓 which satisfies 𝑃0, 𝑃 ′
0 and 𝑃1.

Proof. The assumptions on the topology of 𝑋 and local existence of solutions allow to apply
Lemma B.7 to get sequences of subsets 𝐾 and 𝑈 of 𝑋 indexed by natural numbers such
that 𝐾 covers 𝑋, 𝑈 is locally finite and, for every 𝑖:

• 𝐾𝑖 is compact

• 𝑈𝑖 is open

• 𝐾𝑖 ⊂ 𝑈𝑖

• there is a function 𝑓 ∶ 𝑋 → 𝑌 which satisfies 𝑃0 and satisfies 𝑃1 on 𝑈𝑖.
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We then apply Lemma B.5 to the family of subsets 𝑈 with local predicates ̂𝑃0 combining
𝑃0 and 𝑃 ′

0 and ̂𝑃 𝑖
1 asking that 𝑃1 holds near 𝐾𝑖, and the trivial family of auxiliary predicates

̂𝑃 ′
0.

For this we need to explain how the patching assumption of the current lemma implies
the induction assumption of Lemma B.5. So we fix an index 𝑖 ∈ ℕ and a function 𝑓 which
satisfies ̂𝑃0 and satisfies all ̂𝑃 𝑗

1 for 𝑗 < 𝑖. We denote by 𝐾 the closed subset ⋃𝑗<𝑖 𝐾𝑗 and
denote by 𝑉 an open neighborhood of 𝐾 such that 𝑓 satisfies 𝑃1 on 𝑉 . The patching
assumption applied to 𝐾, 𝐾𝑖, 𝑉 and 𝑈𝑖 with functions 𝑓 and the local solution on 𝑈𝑖 gives
a suitable new function.

From the above lemma we can deduce a version with only a base local predicate 𝑃0 and
a target one 𝑃1 and starting from a function which is already good near some closed subset
𝐾. The is the version that is actually used in our application.

Lemma B.9. Let 𝑋 a second countable locally compact metrizable topological space. Let
𝑃0 and 𝑃1 be local predicates on functions from 𝑋 to a set 𝑌 . Let 𝐾 be a closed subset of
𝑋. Let 𝑓0 ∶ 𝑋 → 𝑌 be a function satisfying 𝑃0 and satisfying 𝑃1 near 𝐾. Assume that

• For every 𝑥 in 𝑋, there exists a function 𝑓 ∶ 𝑋 → 𝑌 which satisfies 𝑃0 and satisfies
𝑃1 near 𝑥.

• For every closed subsets 𝐾1 and 𝐾2 of 𝑋 and every open subsets 𝑈1 and 𝑈2 containing
𝐾1 and 𝐾2, for every function 𝑓1 and 𝑓2 satisfying 𝑃0, if 𝑓1 satisfies 𝑃1 on 𝑈1 and
if 𝑓2 satisfies 𝑃1 on 𝑈1 then there exists 𝑓 which satisfies 𝑃0, and satisfies 𝑃1 near
𝐾1 ∪ 𝐾2 and coincides with 𝑓1 near 𝐾1 ∪ 𝑈𝑐

2 .

Then there exists 𝑓 which satisfies 𝑃0 and 𝑃1 and coincides with 𝑓0 near 𝐾.

Proof. We reduce this to Lemma B.8 using as auxilliary local predicate 𝑃 ′
0 the constraint to

coincide with 𝑓0 near 𝐾.
Our patching condition almost matches the one from Lemma B.8 except that each

(𝐾1, 𝐾2, 𝑈1, 𝑈2) should be replaced by (𝐾 ∪𝐾1, 𝑈 ∪𝑈1, 𝐾2, 𝑈2) where 𝑈 is a suitable neigh-
borhood of 𝐾.
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