Documentation

Mathlib.MeasureTheory.Measure.Stieltjes

Stieltjes measures on the real line #

Consider a function f : ℝ → ℝ which is monotone and right-continuous. Then one can define a corresponding measure, giving mass f b - f a to the interval (a, b].

Main definitions #

Basic properties of Stieltjes functions #

Bundled monotone right-continuous real functions, used to construct Stieltjes measures.

Instances For
    theorem StieltjesFunction.ext {f : StieltjesFunction} {g : StieltjesFunction} (h : ∀ (x : ), f x = g x) :
    f = g
    theorem StieltjesFunction.iInf_Ioi_eq (f : StieltjesFunction) (x : ) :
    ⨅ (r : (Set.Ioi x)), f r = f x
    theorem StieltjesFunction.iInf_rat_gt_eq (f : StieltjesFunction) (x : ) :
    ⨅ (r : { r' : // x < r' }), f r = f x

    The identity of as a Stieltjes function, used to construct Lebesgue measure.

    Equations
    Instances For
      noncomputable def Monotone.stieltjesFunction {f : } (hf : Monotone f) :

      If a function f : ℝ → ℝ is monotone, then the function mapping x to the right limit of f at x is a Stieltjes function, i.e., it is monotone and right-continuous.

      Equations
      • hf.stieltjesFunction = { toFun := Function.rightLim f, mono' := , right_continuous' := }
      Instances For
        theorem Monotone.stieltjesFunction_eq {f : } (hf : Monotone f) (x : ) :
        hf.stieltjesFunction x = Function.rightLim f x

        The outer measure associated to a Stieltjes function #

        Length of an interval. This is the largest monotone function which correctly measures all intervals.

        Equations
        Instances For
          @[simp]
          theorem StieltjesFunction.length_Ioc (f : StieltjesFunction) (a : ) (b : ) :
          f.length (Set.Ioc a b) = ENNReal.ofReal (f b - f a)
          theorem StieltjesFunction.length_mono (f : StieltjesFunction) {s₁ : Set } {s₂ : Set } (h : s₁ s₂) :
          f.length s₁ f.length s₂

          The Stieltjes outer measure associated to a Stieltjes function.

          Equations
          Instances For
            theorem StieltjesFunction.outer_le_length (f : StieltjesFunction) (s : Set ) :
            f.outer s f.length s
            theorem StieltjesFunction.length_subadditive_Icc_Ioo (f : StieltjesFunction) {a : } {b : } {c : } {d : } (ss : Set.Icc a b ⋃ (i : ), Set.Ioo (c i) (d i)) :
            ENNReal.ofReal (f b - f a) ∑' (i : ), ENNReal.ofReal (f (d i) - f (c i))

            If a compact interval [a, b] is covered by a union of open interval (c i, d i), then f b - f a ≤ ∑ f (d i) - f (c i). This is an auxiliary technical statement to prove the same statement for half-open intervals, the point of the current statement being that one can use compactness to reduce it to a finite sum, and argue by induction on the size of the covering set.

            @[simp]
            theorem StieltjesFunction.outer_Ioc (f : StieltjesFunction) (a : ) (b : ) :
            f.outer (Set.Ioc a b) = ENNReal.ofReal (f b - f a)
            theorem StieltjesFunction.outer_trim (f : StieltjesFunction) :
            f.outer.trim = f.outer

            The measure associated to a Stieltjes function #

            theorem StieltjesFunction.measure_def (f : StieltjesFunction) :
            f.measure = { toOuterMeasure := f.outer, m_iUnion := , trim_le := }
            @[irreducible]

            The measure associated to a Stieltjes function, giving mass f b - f a to the interval (a, b].

            Equations
            Instances For
              @[simp]
              theorem StieltjesFunction.measure_Ioc (f : StieltjesFunction) (a : ) (b : ) :
              f.measure (Set.Ioc a b) = ENNReal.ofReal (f b - f a)
              @[simp]
              theorem StieltjesFunction.measure_singleton (f : StieltjesFunction) (a : ) :
              f.measure {a} = ENNReal.ofReal (f a - Function.leftLim (f) a)
              @[simp]
              theorem StieltjesFunction.measure_Icc (f : StieltjesFunction) (a : ) (b : ) :
              f.measure (Set.Icc a b) = ENNReal.ofReal (f b - Function.leftLim (f) a)
              @[simp]
              theorem StieltjesFunction.measure_Ioo (f : StieltjesFunction) {a : } {b : } :
              f.measure (Set.Ioo a b) = ENNReal.ofReal (Function.leftLim (f) b - f a)
              @[simp]
              theorem StieltjesFunction.measure_Ico (f : StieltjesFunction) (a : ) (b : ) :
              f.measure (Set.Ico a b) = ENNReal.ofReal (Function.leftLim (f) b - Function.leftLim (f) a)
              theorem StieltjesFunction.measure_Iic (f : StieltjesFunction) {l : } (hf : Filter.Tendsto (f) Filter.atBot (nhds l)) (x : ) :
              f.measure (Set.Iic x) = ENNReal.ofReal (f x - l)
              theorem StieltjesFunction.measure_Ici (f : StieltjesFunction) {l : } (hf : Filter.Tendsto (f) Filter.atTop (nhds l)) (x : ) :
              f.measure (Set.Ici x) = ENNReal.ofReal (l - Function.leftLim (f) x)
              theorem StieltjesFunction.measure_univ (f : StieltjesFunction) {l : } {u : } (hfl : Filter.Tendsto (f) Filter.atBot (nhds l)) (hfu : Filter.Tendsto (f) Filter.atTop (nhds u)) :
              f.measure Set.univ = ENNReal.ofReal (u - l)
              theorem StieltjesFunction.isFiniteMeasure (f : StieltjesFunction) {l : } {u : } (hfl : Filter.Tendsto (f) Filter.atBot (nhds l)) (hfu : Filter.Tendsto (f) Filter.atTop (nhds u)) :
              theorem StieltjesFunction.isProbabilityMeasure (f : StieltjesFunction) (hf_bot : Filter.Tendsto (f) Filter.atBot (nhds 0)) (hf_top : Filter.Tendsto (f) Filter.atTop (nhds 1)) :
              theorem StieltjesFunction.eq_of_measure_of_tendsto_atBot (f : StieltjesFunction) (g : StieltjesFunction) {l : } (hfg : f.measure = g.measure) (hfl : Filter.Tendsto (f) Filter.atBot (nhds l)) (hgl : Filter.Tendsto (g) Filter.atBot (nhds l)) :
              f = g
              theorem StieltjesFunction.eq_of_measure_of_eq (f : StieltjesFunction) (g : StieltjesFunction) {y : } (hfg : f.measure = g.measure) (hy : f y = g y) :
              f = g