Zulip Chat Archive
Stream: general
Topic: Directedness and ideals
Yaël Dillies (Jan 13 2022 at 09:41):
Am I right in thinking that docs#order.ideal.ideal_inter_nonempty is equivalent to is_directed P (swap (≤))
?
Yaël Dillies (Jan 13 2022 at 09:45):
and similarly docs#order.ideal.ideal_Inter_nonempty should be equivalent to a strong directedness which should be satisfied by a complete_latlice
.
Yaël Dillies (Jan 13 2022 at 09:57):
Yup
import order.ideal
open order.ideal
example : ideal_inter_nonempty P ↔ is_directed P (swap (≤)) :=
begin
split,
{ introI,
exact ⟨λ a b, inter_nonempty (principal a) (principal b)⟩ },
{ introI,
refine ⟨λ I J, _⟩,
obtain ⟨a, ha⟩ := I.nonempty,
obtain ⟨b, hb⟩ := J.nonempty,
obtain ⟨c, hac, hbc⟩ := directed_of (swap (≤)) a b,
exact ⟨c, I.mem_of_le hac ha, J.mem_of_le hbc hb⟩ }
end
Yaël Dillies (Jan 13 2022 at 09:57):
cc @Noam Atar
Yaël Dillies (Jan 13 2022 at 09:59):
Actually, strong directedness is just the existence of a bottom element (doesn't have to be order_bot
).
Yaël Dillies (Jan 13 2022 at 10:39):
Last updated: Dec 20 2023 at 11:08 UTC