Zulip Chat Archive
Stream: general
Topic: Using a definition in statement of lemma
Quinn Culver (Jan 17 2023 at 04:19):
How do I correctly use collinear
in triangle_non_degen
? Seems like since the type of collinear
is Prop
, it should work as I have it.
import combinatorics.configuration
open configuration.projective_plane
open classical
universe u
variables {P L : Type u} [has_mem P L] [configuration.projective_plane P L]
variables (P L)
structure triangle :=
(p₀ p₁ p₂ : P)
(l₀ l₁ l₂ : L)
(i₀₁ : p₀ ∈ l₁)
(i₀₂ : p₀ ∈ l₂)
(i₁₀ : p₁ ∈ l₀)
(i₁₂ : p₁ ∈ l₂)
(i₂₀ : p₂ ∈ l₀)
(i₂₁ : p₂ ∈ l₁)
variables {P}
def collinear (p₀ p₁ p₂ : P) : Prop := ∃ l : L, p₀ ∈ l ∧ p₁ ∈ l ∧ p₂ ∈ l
lemma triangle_non_degen (T : triangle P L) (i₀₀ : T.p₀ ∉ T.l₀) : collinear (T.p₀ T.p₁ T.p₂) := sorry
Heather Macbeth (Jan 17 2023 at 04:23):
@Quinn Culver collinear L T.p₀ T.p₁ T.p₂
should do it.
Quinn Culver (Jan 17 2023 at 04:37):
Thanks @Heather Macbeth. Give Antonella a big hug for me! :hug:
Last updated: Dec 20 2023 at 11:08 UTC