Zulip Chat Archive
Stream: general
Topic: and_or_imp
Johan Commelin (Dec 03 2021 at 14:19):
How does one prove this in a way that logic/basic.lean
will accept?
lemma decidable.and_or_imp {α β γ : Prop} [decidable α] :
(α ∧ β) ∨ (α → γ) ↔ α → (β ∨ γ) :=
by tauto
Ruben Van de Velde (Dec 03 2021 at 14:25):
Does this work?
import logic.basic
lemma decidable.and_or_imp {α β γ : Prop} [decidable α] :
(α ∧ β) ∨ (α → γ) ↔ α → (β ∨ γ) :=
begin
cases decidable.em α with a a,
simp only [true_and, iff_self, a, forall_true_left],
simp only [forall_false_left, false_or, iff_self, a, false_and],
end
Last updated: Dec 20 2023 at 11:08 UTC