Zulip Chat Archive
Stream: general
Topic: bicompr for linear maps
Filippo A. E. Nuccio (Jun 29 2021 at 11:37):
The definition of bicompr
I find is
def bicompr (f : γ → δ) (g : α → β → γ) (a b) :=
f (g a b)
and it allows to compose an unary function f
with a binary function g
. I wonder if we have the same for more advanced morphisms, like
def foo (f : P →ₗ[R] Q) (g: M →ₗ[R] N →ₗ[R] P) : (M →ₗ[R] N →ₗ[R] Q) :=
for linear maps (or for other structures).
Filippo A. E. Nuccio (Jun 29 2021 at 11:47):
Oh yes, I found it: linear_map.compr₂
.
Last updated: Dec 20 2023 at 11:08 UTC