Zulip Chat Archive
Stream: general
Topic: categorical diamond
Johan Commelin (Sep 21 2021 at 07:11):
example (i : fin 3) : @quiver.hom (prod (fin 3) (fin 2))
(@category_theory.category_struct.to_quiver (prod (fin 3) (fin 2))
(@category_theory.category.to_category_struct (prod (fin 3) (fin 2))
(@preorder.small_category (prod (fin 3) (fin 2))
(@prod.preorder (fin 3) (fin 2)
(@directed_order.to_preorder (fin 3) (@linear_order.to_directed_order (fin 3) (@fin.linear_order 3)))
(@directed_order.to_preorder (fin 2)
(@linear_order.to_directed_order (fin 2) (@fin.linear_order 2)))))))
(@prod.mk (fin 3) (fin 2) i 0)
(@prod.mk (fin 3) (fin 2) i 1) =
@quiver.hom (prod (fin 3) (fin 2))
(@category_theory.category_struct.to_quiver (prod (fin 3) (fin 2))
(@category_theory.category.to_category_struct (prod (fin 3) (fin 2))
(@category_theory.uniform_prod (fin 3)
(@preorder.small_category (fin 3)
(@directed_order.to_preorder (fin 3) (@linear_order.to_directed_order (fin 3) (@fin.linear_order 3))))
(fin 2)
(@preorder.small_category (fin 2)
(@directed_order.to_preorder (fin 2)
(@linear_order.to_directed_order (fin 2) (@fin.linear_order 2)))))))
(@prod.mk (fin 3) (fin 2) i 0)
(@prod.mk (fin 3) (fin 2) i 1) := rfl -- fails
Johan Commelin (Sep 21 2021 at 07:12):
If we have two preorders P
and Q
, and we consider P × Q
as a category, we can do this in two ways:
(i) first view them as categories, then take the product
(ii) take the product of preorders, then view it as a category.
Johan Commelin (Sep 21 2021 at 07:12):
These aren't defeq :crying_cat:
Scott Morrison (Sep 21 2021 at 08:59):
Presumably it comes down to ulift (plift (X \and Y))
is not the same as ulift (plift X) \times ulift (plift Y)
.
Last updated: Dec 20 2023 at 11:08 UTC