Zulip Chat Archive
Stream: general
Topic: lemma names in data/polynomial
FR (Mar 19 2022 at 16:39):
We have
lemma eval₂_eq_sum_range :
p.eval₂ f x = ∑ i in finset.range (p.nat_degree + 1), f (p.coeff i) * x^i
lemma eval₂_eq_sum_range' (f : R →+* S) {p : R[X]} {n : ℕ} (hn : p.nat_degree < n) (x : S) :
eval₂ f x p = ∑ i in finset.range n, f (p.coeff i) * x ^ i
lemma aeval_eq_sum_range [algebra R S] {p : R[X]} (x : S) :
aeval x p = ∑ i in finset.range (p.nat_degree + 1), p.coeff i • x ^ i
lemma aeval_eq_sum_range' [algebra R S] {p : R[X]} {n : ℕ} (hn : p.nat_degree < n) (x : S) :
aeval x p = ∑ i in finset.range n, p.coeff i • x ^ i
and
lemma eval_eq_finset_sum (p : R[X]) (x : R) :
p.eval x = ∑ i in range (p.nat_degree + 1), p.coeff i * x ^ i
lemma eval_eq_finset_sum' (P : R[X]) :
(λ x, eval x P) = (λ x, ∑ i in range (P.nat_degree + 1), P.coeff i * x ^ i)
Looks like there are some inconsistencies.
FR (Mar 20 2022 at 18:07):
Would it be better to replace eval_eq_finset_sum
and eval_eq_finset_sum'
with the following lemmas?
lemma eval_eq_sum_range {p : R[X]} (x : R) :
p.eval x = ∑ i in finset.range (p.nat_degree + 1), p.coeff i * x ^ i
lemma eval_eq_sum_range' {p : R[X]} {n : ℕ} (hn : p.nat_degree < n) (x : R) :
p.eval x = ∑ i in finset.range n, p.coeff i * x ^ i
Kevin Buzzard (Mar 20 2022 at 18:25):
docs#polynomial.eval_eq_finset_sum
Kevin Buzzard (Mar 20 2022 at 18:27):
eval_eq_sum_range
looks the same as that to me -- is your question about renaming the lemmas or did I miss something?
FR (Mar 20 2022 at 18:32):
Yes, there are some inconsistencies in names. See the previous comment.
Last updated: Dec 20 2023 at 11:08 UTC