Zulip Chat Archive
Stream: general
Topic: lemmas for Nat.digits
Frederick Pu (Feb 16 2025 at 02:59):
do the following lemmas exist for Nat.digits?
example (x b : ℕ) (hb : b > 1) (hx : (Nat.digits b x).length = 1) : Nat.digits b x = [x] := by sorry
example (x b : ℕ) (hb : b > 1) (hx : x > 0) : (Nat.digits b x).length > 0 := by sorry
Matt Diamond (Feb 16 2025 at 03:26):
docs#Nat.digits_len gets you most of the way toward proving the 2nd one:
example (x b : ℕ) (hb : b > 1) (hx : x > 0) : (Nat.digits b x).length > 0 := by
rw [Nat.digits_len _ _ hb hx.ne']
exact Nat.zero_lt_succ _
Daniel Weber (Feb 16 2025 at 05:35):
Could you do the first with docs#Nat.digits_of_lt ?
Frederick Pu (Feb 16 2025 at 15:22):
but we also need to prove that if (Nat.digits b x).length = 1
then x < b
Kevin Buzzard (Feb 16 2025 at 15:39):
Looks like digits_len
reduces this to docs#Nat.log_eq_zero_iff
Kevin Buzzard (Feb 16 2025 at 15:40):
Probably one should prove x < b^length if that's not already there
Frederick Pu (Feb 16 2025 at 16:45):
doesn't Nat.digits_len basically do that?
Last updated: May 02 2025 at 03:31 UTC