Zulip Chat Archive
Stream: general
Topic: new nat lemmas (and naming)
Eric Wieser (Oct 22 2020 at 10:57):
Are these simple enough to belong in mathlib? Can anyone suggest names?
lemma nat.what {a b : ℕ} (h : b ≤ a) : b + (a - b) = a :=
by rw [←nat.add_sub_assoc h, nat.add_sub_cancel_left]
lemma nat.what {a b c: ℕ} (hab : b ≤ a) (hbc : c ≤ b) : (a - b) + (b - c) = a - c :=
by rw [←nat.add_sub_assoc hbc, ←nat.sub_add_comm hab, nat.add_sub_cancel]
Johan Commelin (Oct 22 2020 at 10:58):
nat.add_sub_self_of_le
and nat.sub_add_sub_cancel
?
Eric Wieser (Oct 22 2020 at 11:00):
Those sound reasonable to me
Gabriel Ebner (Oct 22 2020 at 11:19):
(deleted)
Eric Wieser (Oct 22 2020 at 11:24):
The first lemma exists already as docs#nat.add_sub_cancel'
Eric Wieser (Oct 22 2020 at 11:27):
And docs#sub_add_sub_cancel exists for general additive groups, so clearly the name is correct. Thanks @Johan Commelin!
Eric Wieser (Oct 22 2020 at 11:33):
Last updated: Dec 20 2023 at 11:08 UTC