Zulip Chat Archive
Stream: general
Topic: powers in ordered fields
Patrick Massot (Jun 13 2020 at 17:06):
I'm trying to gather lemmas I needed for my IAS demo into a Lean PR. But I don't know where to put two lemmas. They require both linear ordered fields and group powers, neither of which imports the other.
variables {𝕜 : Type*} [linear_ordered_field 𝕜]
lemma pos_div_pow_pos {a b : 𝕜} (ha : 0 < a) (hb : 0 < b) (k : ℕ) : 0 < a/b^k :=
div_pos ha (pow_pos hb k)
lemma div_pow_le {a b : 𝕜} (ha : 0 < a) (hb : 1 ≤ b) (k : ℕ) : a/b^k ≤ a :=
(div_le_iff $ pow_pos (lt_of_lt_of_le zero_lt_one hb) k).mpr
(calc a = a *1 : by simp
... ≤ a*b^k : (mul_le_mul_left ha).mpr $ one_le_pow_of_one_le hb _)
Johan Commelin (Jun 13 2020 at 17:09):
start a file linear_ordered_field_power
?
Patrick Massot (Jun 13 2020 at 17:17):
This sounds a bit excessive.
Reid Barton (Jun 13 2020 at 17:19):
algebra.field_power
?
Patrick Massot (Jun 13 2020 at 17:21):
I thought this was all about fpow
but actually there are also gpow
there.
Patrick Massot (Jun 13 2020 at 17:21):
Thanks.
Last updated: Dec 20 2023 at 11:08 UTC