Zulip Chat Archive
Stream: general
Topic: simpa hygiene issue
Yakov Pechersky (Apr 02 2021 at 05:54):
simpa
substitutes in this
over existing this
. Expected?
import group_theory.perm.cycles
variables {α : Type*} [decidable_eq α] {x y : α}
open list equiv equiv.perm
def list.form_perm (l : list α) : equiv.perm α :=
(list.zip_with equiv.swap l l.tail).prod
example (h : x ≠ y) : [x, y].erase_dup.form_perm.is_cycle :=
begin
have : nodup [x, y] := by simpa,
simpa [erase_dup_eq_self.mpr this, form_perm] using is_cycle.swap h
-- what is the hyp used for ^^? it is the is_cycle.swap h, not what we want
end
Yakov Pechersky (Apr 02 2021 at 05:56):
Of course, I can prove it using
simpa [←erase_dup_eq_self, h, form_perm] using is_cycle.swap h
but just wanted to flag
Last updated: Dec 20 2023 at 11:08 UTC