Zulip Chat Archive
Stream: general
Topic: slow decl
Johan Commelin (Sep 02 2022 at 14:15):
I'm touching topology/connected
for unrelated reasons, and noticed that docs#sum.is_connected_iff is ridiculously slow compared to the rest of the file. Squeezing the two simps doesn't help. The rest of the proof basically only uses refine
so I don't understand why it's so slow.
Ruben Van de Velde (Sep 02 2022 at 14:32):
It's instantaneous with
@@ -535,13 +537,13 @@ begin
let v : set (α ⊕ β) := range sum.inr,
have hu : is_open u, exact is_open_range_inl,
obtain ⟨x | x, hx⟩ := hs.nonempty,
- { have h := is_preconnected.subset_left_of_subset_union
+ { have h : s ⊆ range sum.inl := is_preconnected.subset_left_of_subset_union
is_open_range_inl is_open_range_inr is_compl_range_inl_range_inr.disjoint
(show s ⊆ range sum.inl ∪ range sum.inr, by simp) ⟨sum.inl x, hx, x, rfl⟩ hs.2,
refine or.inl ⟨sum.inl ⁻¹' s, _, _⟩,
{ exact hs.preimage_of_open_map sum.inl_injective open_embedding_inl.is_open_map h },
{ exact (set.image_preimage_eq_of_subset h).symm } },
- { have h := is_preconnected.subset_right_of_subset_union
+ { have h : s ⊆ range sum.inr := is_preconnected.subset_right_of_subset_union
is_open_range_inl is_open_range_inr is_compl_range_inl_range_inr.disjoint
(show s ⊆ range sum.inl ∪ range sum.inr, by simp) ⟨sum.inr x, hx, x, rfl⟩ hs.2,
refine or.inr ⟨sum.inr ⁻¹' s, _, _⟩,
Johan Commelin (Sep 02 2022 at 14:32):
Wow! So it was just spending ages on type inference?
Johan Commelin (Sep 02 2022 at 14:32):
Could you please PR?
Ruben Van de Velde (Sep 02 2022 at 14:33):
Yeah
Ruben Van de Velde (Sep 02 2022 at 14:38):
Last updated: Dec 20 2023 at 11:08 UTC