Zulip Chat Archive
Stream: general
Topic: variable inside header or outside header
Kenny Lau (Jul 25 2018 at 02:20):
import algebra.module universes u v w u₁ namespace hidden1 variables {R : Type u} [comm_ring R] include R structure is_bilinear_map {M N P} [module R M] [module R N] [module R P] (f : M → N → P) : Prop := (add_pair : ∀ x y z, f (x + y) z = f x z + f y z) (pair_add : ∀ x y z, f x (y + z) = f x y + f x z) (smul_pair : ∀ r x y, f (r • x) y = r • f x y) (pair_smul : ∀ r x y, f x (r • y) = r • f x y) #check @is_bilinear_map /- is_bilinear_map : Π {R : Type u_1} [_inst_1 : comm_ring R] {M : Type u_2} {N : Type u_3} {P : Type u_4} [_inst_2 : module R M] [_inst_3 : module R N] [_inst_4 : module R P], (M → N → P) → Prop -/ variables (M : Type v) (N : Type w) (P : Type u₁) variables [module R M] [module R N] [module R P] variables {f : M → N → P} (hf : is_bilinear_map f) --works end hidden1 namespace hidden2 variables {R : Type u} [comm_ring R] include R variables (M : Type v) (N : Type w) (P : Type u₁) variables [module R M] [module R N] [module R P] variables {M N P} structure is_bilinear_map (f : M → N → P) : Prop := (add_pair : ∀ x y z, f (x + y) z = f x z + f y z) (pair_add : ∀ x y z, f x (y + z) = f x y + f x z) (smul_pair : ∀ r x y, f (r • x) y = r • f x y) (pair_smul : ∀ r x y, f x (r • y) = r • f x y) #check @is_bilinear_map /- is_bilinear_map : Π {R : Type u_1} [_inst_1 : comm_ring R] {M : Type u_2} {N : Type u_3} {P : Type u_4} [_inst_2 : module R M (comm_ring.to_ring R)] [_inst_3 : module R N (comm_ring.to_ring R)] [_inst_4 : module R P (comm_ring.to_ring R)], (M → N → P) → Prop -/ variables {f : M → N → P} (hf : is_bilinear_map f) -- fails end hidden2
Kenny Lau (Jul 25 2018 at 02:21):
why does it make a difference whether the variables are inside or outside the header (the space between the name of the definition and the colon)?
Last updated: Dec 20 2023 at 11:08 UTC