Zulip Chat Archive
Stream: general
Topic: wloggery
Kevin Buzzard (Feb 10 2021 at 23:26):
Can I use wlog
to get around that suffices
trick below?
import data.set.basic
open function
variables {X Y : Type} (f : X → Y)
lemma image_injective : injective f → injective (λ S, f '' S) :=
begin
intro hf,
intros S T h,
dsimp at h,
ext x,
/-
X Y : Type
f : X → Y
hf : injective f
S T : set X
h : f '' S = f '' T
x : X
⊢ x ∈ S ↔ x ∈ T
-/
-- how do I say "wlog I only have to do one implication?"
suffices : ∀ S T : set X, f '' S = f '' T → x ∈ S → x ∈ T,
{ split,
apply this _ _ h,
apply this _ _ h.symm,
},
clear h S T,
intros S T h,
sorry
end
Mario Carneiro (Feb 10 2021 at 23:39):
It's a little silly because wlog
isn't designed to handle wlogging in the goal, only the hypotheses
lemma image_injective : injective f → injective (λ S, f '' S) :=
begin
intro hf,
intros S T h,
dsimp at h,
ext x,
by_contra,
wlog : ¬(x ∈ S → x ∈ T) using [S T, T S],
{ simpa only [← not_and_distrib, iff_def] using h },
apply case, clear case h_1,
intros h,
sorry
end
Last updated: Dec 20 2023 at 11:08 UTC