Zulip Chat Archive
Stream: new members
Topic: Commutativity of div_eq_mul_inv
Shadman Sakib (Jul 24 2021 at 21:36):
import analysis.complex.circle
import group_theory.specific_groups.dihedral
import analysis.special_functions.trigonometric
lemma mul_inv_eq_div {G : Type} [_inst_1 : div_inv_monoid G] (a b : G) : b⁻¹ * a = a / b :=
begin
sorry,
end
Shadman Sakib (Jul 24 2021 at 21:37):
How would I show that a/b = a * b^-1 is commutative?
Eric Wieser (Jul 24 2021 at 22:33):
It's false
Eric Wieser (Jul 24 2021 at 22:34):
It amounts to stating that multiplication is commutative, but you didn't require it to be.
Eric Wieser (Jul 24 2021 at 22:35):
docs#comm_group satisfies the property you need
Shadman Sakib (Jul 24 2021 at 22:54):
Well, I was using this proof to show that ((⇑angle_to_circle (⇑(zmod_to_angle hm) i))⁻¹ * ⇑angle_to_circle (⇑(zmod_to_angle hm) j)) = (⇑angle_to_circle (⇑(zmod_to_angle hm) j) / ⇑angle_to_circle (⇑(zmod_to_angle hm) i))
Shadman Sakib (Jul 24 2021 at 22:54):
I can supply an mwe in one moment
Shadman Sakib (Jul 24 2021 at 22:57):
import analysis.complex.circle
import group_theory.specific_groups.dihedral
import analysis.special_functions.trigonometric
noncomputable theory
open complex dihedral_group
variables (n : ℝ) {m : ℕ}
def angle_to_circle_hom : real.angle ≃+ additive circle :=
(quotient_add_group.equiv_quotient_of_eq (by { ext x, exact exp_map_circle_eq_one_iff.symm})).trans
(quotient_add_group.quotient_ker_equiv_of_surjective exp_map_circle_hom exp_map_circle_surjective)
def angle_to_circle : real.angle ≃ circle := angle_to_circle_hom.to_equiv
def zmod_to_angle (hm : m ≠ 0) : zmod m →+ real.angle :=
zmod.lift m ⟨gmultiples_hom real.angle ↑(2 * real.pi /m),
begin
suffices : m • (2 * π / ↑m) = 2 * π,
{ simpa using congr_arg (coe : _ → real.angle) this },
have : (m:ℝ) ≠ 0 := by exact_mod_cast hm,
field_simp,
ring
end⟩
variables (hm : m ≠ 0)
lemma comm_angle_to_circle_zmod (i j : zmod m): ((angle_to_circle ((zmod_to_angle hm) i))⁻¹ * angle_to_circle ((zmod_to_angle hm) j)) =
(angle_to_circle ((zmod_to_angle hm) j) / angle_to_circle ((zmod_to_angle hm) i)) :=
begin
sorry,
end
Shadman Sakib (Jul 24 2021 at 22:58):
Is there a way to show this with the structure comm_group?
Eric Rodriguez (Jul 24 2021 at 23:03):
what about (0 : real.angle)
?
Eric Rodriguez (Jul 24 2021 at 23:03):
(also your mwe doesn't work, I can't find angle_to_circle_hom
and you need the variables {m}
higher up
Shadman Sakib (Jul 24 2021 at 23:05):
Ok, sorry about that. Please try it now
Last updated: Dec 20 2023 at 11:08 UTC