Zulip Chat Archive

Stream: new members

Topic: Commutativity of div_eq_mul_inv


Shadman Sakib (Jul 24 2021 at 21:36):

import analysis.complex.circle
import group_theory.specific_groups.dihedral
import analysis.special_functions.trigonometric

lemma mul_inv_eq_div {G : Type} [_inst_1 : div_inv_monoid G] (a b : G) : b⁻¹ * a = a / b :=
begin
  sorry,
end

Shadman Sakib (Jul 24 2021 at 21:37):

How would I show that a/b = a * b^-1 is commutative?

Eric Wieser (Jul 24 2021 at 22:33):

It's false

Eric Wieser (Jul 24 2021 at 22:34):

It amounts to stating that multiplication is commutative, but you didn't require it to be.

Eric Wieser (Jul 24 2021 at 22:35):

docs#comm_group satisfies the property you need

Shadman Sakib (Jul 24 2021 at 22:54):

Well, I was using this proof to show that ((⇑angle_to_circle (⇑(zmod_to_angle hm) i))⁻¹ * ⇑angle_to_circle (⇑(zmod_to_angle hm) j)) = (⇑angle_to_circle (⇑(zmod_to_angle hm) j) / ⇑angle_to_circle (⇑(zmod_to_angle hm) i))

Shadman Sakib (Jul 24 2021 at 22:54):

I can supply an mwe in one moment

Shadman Sakib (Jul 24 2021 at 22:57):

import analysis.complex.circle
import group_theory.specific_groups.dihedral
import analysis.special_functions.trigonometric

noncomputable theory

open complex dihedral_group

variables (n : ) {m : }

def angle_to_circle_hom : real.angle ≃+ additive circle :=
(quotient_add_group.equiv_quotient_of_eq (by { ext x, exact exp_map_circle_eq_one_iff.symm})).trans
(quotient_add_group.quotient_ker_equiv_of_surjective exp_map_circle_hom exp_map_circle_surjective)

def angle_to_circle : real.angle  circle := angle_to_circle_hom.to_equiv

def zmod_to_angle (hm : m  0) : zmod m →+ real.angle :=
zmod.lift m gmultiples_hom real.angle (2 * real.pi /m),
  begin
    suffices : m  (2 * π / m) = 2 * π,
    { simpa using congr_arg (coe : _  real.angle) this },
    have : (m:)  0 := by exact_mod_cast hm,
    field_simp,
    ring
  end

variables (hm : m  0)

lemma comm_angle_to_circle_zmod (i j : zmod m): ((angle_to_circle ((zmod_to_angle hm) i))⁻¹ * angle_to_circle ((zmod_to_angle hm) j)) =
(angle_to_circle ((zmod_to_angle hm) j) / angle_to_circle ((zmod_to_angle hm) i)) :=
begin
  sorry,
end

Shadman Sakib (Jul 24 2021 at 22:58):

Is there a way to show this with the structure comm_group?

Eric Rodriguez (Jul 24 2021 at 23:03):

what about (0 : real.angle)?

Eric Rodriguez (Jul 24 2021 at 23:03):

(also your mwe doesn't work, I can't find angle_to_circle_hom and you need the variables {m} higher up

Shadman Sakib (Jul 24 2021 at 23:05):

Ok, sorry about that. Please try it now


Last updated: Dec 20 2023 at 11:08 UTC