Zulip Chat Archive
Stream: new members
Topic: Derivatives question
Janitha Aswedige (Jul 18 2025 at 07:51):
I was surprised that the following proof seemed to go on forever. Is there a different way to do it?
example {f : ℝ → ℝ} {x : ℝ} (hf : ∀ x, f x = 2 * x^4 + 3 * x^2 + 4 * x + 5) : deriv f x = 8 * x^3 + 6 * x + 4 := by
have hf' : f = fun x ↦ 2 * x^4 + 3 * x^2 + 4 * x + 5 := by ext; apply hf
rw [hf']
rw [deriv_add, deriv_add, deriv_add]
rw [deriv_const_mul, deriv_const_mul, deriv_const_mul]
simp [deriv_pow, deriv_pow]
ring
exact differentiableAt_id'
exact differentiableAt_pow 2
exact differentiableAt_pow 4
apply DifferentiableAt.const_mul
exact differentiableAt_pow 4
apply DifferentiableAt.const_mul
exact differentiableAt_pow 2
apply DifferentiableAt.add
apply DifferentiableAt.const_mul
exact differentiableAt_pow 4
apply DifferentiableAt.const_mul
exact differentiableAt_pow 2
apply DifferentiableAt.const_mul
exact differentiableAt_id'
apply DifferentiableAt.add
apply DifferentiableAt.add
apply DifferentiableAt.const_mul
exact differentiableAt_pow 4
apply DifferentiableAt.const_mul
exact differentiableAt_pow 2
apply DifferentiableAt.const_mul
exact differentiableAt_id'
exact differentiableAt_const 5
Chris Birkbeck (Jul 18 2025 at 08:05):
does fun_prop do it?
Janitha Aswedige (Jul 18 2025 at 08:07):
That worked. thanks!
Last updated: Dec 20 2025 at 21:32 UTC