Zulip Chat Archive

Stream: new members

Topic: How to prove this integral is integrableOn?


Junqi Liu (Sep 26 2024 at 11:56):

import Mathlib

example (n : ): MeasureTheory.IntegrableOn
    (fun (xyz :  ×  × ) 
      1 / ((1 - (1 - xyz.2.2) * xyz.1) * (1 - xyz.2.1 * xyz.2.2)))
    (Set.Ioo 0 1 ×ˢ Set.Ioo 0 1 ×ˢ Set.Ioo 0 1)
    (MeasureTheory.volume.prod (MeasureTheory.volume.prod MeasureTheory.volume)) := by
  sorry

Junqi Liu (Sep 26 2024 at 11:59):

I have proved it is AEStronglyMeasurable, but I don't know how to prove it is finite because it has singular point. For math proof, its value can be calculated by DCT.

Bjørn Kjos-Hanssen (Sep 26 2024 at 18:23):

You can set up DCT like this:

import Mathlib.MeasureTheory.Integral.Lebesgue
import Mathlib.MeasureTheory.MeasurableSpace.Defs
import Mathlib

example (n : ): MeasureTheory.IntegrableOn
    (fun ((x,y,z) :  ×  × ) 
      1 / ((1 - (1 - z) * x) * (1 - y * z)))
    (Set.Ioo 0 1 ×ˢ Set.Ioo 0 1 ×ˢ Set.Ioo 0 1)
    (MeasureTheory.volume.prod (MeasureTheory.volume.prod MeasureTheory.volume)) := by
  have Q := @MeasureTheory.tendsto_lintegral_of_dominated_convergence  Real.measurableSpace MeasureTheory.volume
  sorry

Bjørn Kjos-Hanssen (Sep 26 2024 at 18:24):

Then if you inspect Q you can provide the dominating function, whatever it is...

Junqi Liu (Sep 27 2024 at 02:49):

Is there characteristic function in Mathlib4? The function sequence which I want is that χ(1n,11n)\chi_{(\frac{1}{n},1- \frac{1}{n})} (fun _ => _)

Bjørn Kjos-Hanssen (Sep 27 2024 at 03:02):

docs#Set.indicator

Junqi Liu (Sep 27 2024 at 03:18):

thanks! I'll have a try


Last updated: May 02 2025 at 03:31 UTC