Zulip Chat Archive
Stream: new members
Topic: How to prove this integral is integrableOn?
Junqi Liu (Sep 26 2024 at 11:56):
import Mathlib
example (n : ℕ): MeasureTheory.IntegrableOn
(fun (xyz : ℝ × ℝ × ℝ) ↦
1 / ((1 - (1 - xyz.2.2) * xyz.1) * (1 - xyz.2.1 * xyz.2.2)))
(Set.Ioo 0 1 ×ˢ Set.Ioo 0 1 ×ˢ Set.Ioo 0 1)
(MeasureTheory.volume.prod (MeasureTheory.volume.prod MeasureTheory.volume)) := by
sorry
Junqi Liu (Sep 26 2024 at 11:59):
I have proved it is AEStronglyMeasurable, but I don't know how to prove it is finite because it has singular point. For math proof, its value can be calculated by DCT.
Bjørn Kjos-Hanssen (Sep 26 2024 at 18:23):
You can set up DCT like this:
import Mathlib.MeasureTheory.Integral.Lebesgue
import Mathlib.MeasureTheory.MeasurableSpace.Defs
import Mathlib
example (n : ℕ): MeasureTheory.IntegrableOn
(fun ((x,y,z) : ℝ × ℝ × ℝ) ↦
1 / ((1 - (1 - z) * x) * (1 - y * z)))
(Set.Ioo 0 1 ×ˢ Set.Ioo 0 1 ×ˢ Set.Ioo 0 1)
(MeasureTheory.volume.prod (MeasureTheory.volume.prod MeasureTheory.volume)) := by
have Q := @MeasureTheory.tendsto_lintegral_of_dominated_convergence ℝ Real.measurableSpace MeasureTheory.volume
sorry
Bjørn Kjos-Hanssen (Sep 26 2024 at 18:24):
Then if you inspect Q
you can provide the dominating function, whatever it is...
Junqi Liu (Sep 27 2024 at 02:49):
Is there characteristic function in Mathlib4? The function sequence which I want is that (fun _ => _)
Bjørn Kjos-Hanssen (Sep 27 2024 at 03:02):
Junqi Liu (Sep 27 2024 at 03:18):
thanks! I'll have a try
Last updated: May 02 2025 at 03:31 UTC