Zulip Chat Archive
Stream: new members
Topic: How to prove this limit?
Junqi Liu (Sep 28 2024 at 14:26):
import Mathlib
example (f : ℝ × ℝ → ℝ) : Filter.Tendsto (fun (n : ℕ) ↦
(Set.Ioo (1 / ((n : ℝ) + 1)) (1 - 1 / (↑n + 1)) ×ˢ Set.Ioo (1 / ((n : ℝ) + 1)) (1 - 1 / (↑n + 1))).indicator f x)
Filter.atTop (nhds ((Set.Ioo 0 1 ×ˢ Set.Ioo 0 1).indicator f x)) := by
sorry
Bjørn Kjos-Hanssen (Sep 28 2024 at 17:22):
Prove that s.indicator f x
is just (f x) * s.indicator 1 x
so it suffices to prove the statement for 1
; then you can write simp
to get an easier goal.
Junqi Liu (Sep 29 2024 at 15:27):
emmmmmm. By following your suggestion I get a new goal:
import Mathlib
example : Filter.Tendsto (fun (n : ℕ) ↦
(Set.Ioo (1 / ((n : ℝ) + 1)) (1 - 1 / (↑n + 1)) ×ˢ Set.Ioo (1 / ((n : ℝ) + 1)) (1 - 1 / (↑n + 1))).indicator 1 x)
Filter.atTop (nhds ((Set.Ioo 0 1 ×ˢ Set.Ioo 0 1).indicator 1 x)) := by
sorry
But I still don't know how to due with it. wuwuwu:sob:
Bjørn Kjos-Hanssen (Sep 29 2024 at 22:13):
Ah sorry, I guess the constant function 1
has to be spelled out more: (fun _ => 1)
. Then try simp
.
Junqi Liu (Oct 01 2024 at 13:00):
I have tried simp
, but it seems like I get a goal which is wrong. I don't know why.
Last updated: May 02 2025 at 03:31 UTC