Zulip Chat Archive
Stream: new members
Topic: Image of a linear map
Maxime Darrin (Jun 05 2021 at 09:44):
Hi !
I'm trying to write the image of a linear map.
import algebra.module.linear_map
import linear_algebra.basic
import data.real.basic
import algebra.module.submodule
example
(R : Type*) (E : Type*) (F : Type*)
[semiring R]
[add_comm_monoid E] [module R E]
(f : linear_map R E E)
:
f '' E := sorry
example
(R : Type*) (E : Type*) (F : Type*)
[semiring R]
[add_comm_monoid E] [module R E]
(f : linear_map R E E)
:
f '' \top := sorry
In the second case it works but the results is not a submodule. How can I get Im f as a submodule ?
Thanks for the help!
Kevin Buzzard (Jun 05 2021 at 09:47):
example (R : Type*) (E : Type*) (F : Type*)
[semiring R] [add_comm_monoid E] [module R E]
(f : E →ₗ[R] E) : submodule R E :=
(⊤ : submodule R E).map f
Kevin Buzzard (Jun 05 2021 at 09:49):
E →ₗ[R] E
is notation for linear_map R E E
, submodule.map
is pushforward of submodules along a linear map, and ⊤
(top, not T) is the biggest submodule. I am rather surprised that there is no submodule.range
.
Eric Wieser (Jun 05 2021 at 10:25):
Kevin Buzzard (Jun 05 2021 at 12:51):
But docs#submodule.map ?
Kevin Buzzard (Jun 05 2021 at 12:51):
I guess it makes sense
Last updated: Dec 20 2023 at 11:08 UTC