Zulip Chat Archive
Stream: new members
Topic: Integration by parts
Julia Ramos Alves (Aug 09 2022 at 16:31):
Hello to all! I'm working with the following example:
import measure_theory.integral.interval_integral
import data.real.basic
import analysis.special_functions.integrals
example (x : ℝ) (n : ℕ) :
(2 * ↑real.pi)⁻¹ *
∫ (x : ℝ) in
-real.pi..real.pi,
↑x * complex.exp (-complex.I * ↑↑n * ↑x) =
(-1) ^ n * complex.I / ↑n :=
begin
sorry,
end
I wanted to be able to apply integration by parts but I have not found such a theorem in the mathlib documentation, can someone help me figure that out?
Ruben Van de Velde (Aug 09 2022 at 17:04):
docs#interval_integral.integral_mul_deriv_eq_deriv_mul
Julia Ramos Alves (Aug 10 2022 at 12:39):
I'm still having some trouble in order to set up the necessary conditions to apply integral_mul_deriv_eq_deriv_mul, the current code I have looks like the following:
import analysis.fourier
import measure_theory.integral.interval_integral
import data.real.basic
import analysis.special_functions.integrals
noncomputable
def fourier_coeff (f : ℝ → ℂ) (n : ℤ) : ℂ :=
(2 * real.pi)⁻¹ * ∫ x in -real.pi .. real.pi, (f x) * complex.exp (-complex.I * n * x)
lemma calc_cn (x: ℝ)(f : ℝ → ℂ)(hf: f x = x)(n : ℕ) (g : ℝ → ℂ)
(hg: g x = complex.exp (-(complex.I * ↑n * x))) :
fourier_coeff f n = (-1)^n * complex.I / n :=
begin
rw fourier_coeff,
simp,
simp_rw ← hg,
/-rw interval_integral.integral_mul_deriv_eq_deriv_mul,-/
end
I'm trying to set it up in order to avoid the following error:
rewrite tactic failed, did not find instance of the pattern in the target expression
∫ (x : ℝ) in ?m_3..?m_4, ?m_1 x * ?m_2 x
But simp_rw fails and I don't really understand why, can someone give me an insight on that?
Yakov Pechersky (Aug 10 2022 at 12:47):
docs#interval_integral.integral_mul_deriv_eq_deriv_mul doesn't work because that's for real -> real
Ruben Van de Velde (Aug 10 2022 at 17:50):
Do we not have any more general variants?
Last updated: Dec 20 2023 at 11:08 UTC