Zulip Chat Archive
Stream: new members
Topic: Intermediate Value Theorem
Elizabeth (Feb 12 2020 at 19:11):
Has anyone formalized the Intermediate Value Theorem on Lean? I'm confused about some steps of the proof :(
Rob Lewis (Feb 12 2020 at 19:34):
There are some versions of the IVT in this file here, but I'm not sure how explanatory they are: https://github.com/leanprover-community/mathlib/blob/master/src/topology/algebra/ordered.lean
Rob Lewis (Feb 12 2020 at 19:34):
If you post some code, maybe we can give you specific advice.
Elizabeth (Feb 12 2020 at 19:44):
Well, I'm just revising for a test and confused for the proof my lecturer showed me, so I wonder if Lean could help to explain the idea more clearly. Anyway, thank you very much.
Johan Commelin (Feb 12 2020 at 19:45):
In principle, the answer should be yes. However, with the way mathlib works, I'm afraid it won't really work.
Johan Commelin (Feb 12 2020 at 19:45):
mathlib focuses on getting the most general statement with the shortest proof. So it doesn't aim for readability or explaining ideas/details.
Johan Commelin (Feb 12 2020 at 19:46):
In other words, all the information is there (there can't be any gaps in the proofs), but you'll probably have to work in order to understand what's going on.
Reid Barton (Feb 12 2020 at 20:01):
You could try applying a procedure like
(0. Obtain a built copy of mathlib)
- Find a theorem whose proof you want to understand. Probably
is_connected_Icc
is a good starting place. - Open the file in an IDE, step through the lines of the tactic proof and watch how the tactic state changes. Ignore the actual tactics and try to justify the steps for yourself just looking at the tactic state.
- If there's a step you don't understand, hopefully the corresponding tactic names a relevant theorem. Look at the type of that theorem and if you don't understand why it is true then go back to step 1.
Jason KY. (Feb 12 2020 at 20:29):
Elizabeth, you're in my class right?
I have proved the intermediate value theorem in LEAN the same way our professor had taught us so it might be helpful?
Here it is (scroll down to line 237): https://github.com/JasonKYi/M4000x_LEAN_formalisation/blob/master/src/M40002/M40002_C5.lean
Johan Commelin (Feb 12 2020 at 20:34):
@Elizabeth :up:
Rob Lewis (Feb 12 2020 at 20:34):
I think it's super cool that @Elizabeth even thought to ask this question, and even cooler that @Jason KY. has an answer!
Johan Commelin (Feb 12 2020 at 20:38):
@Jason KY. Wow, that's a monster proof (-;
Johan Commelin (Feb 12 2020 at 20:39):
Typo at https://github.com/JasonKYi/M4000x_LEAN_formalisation/blob/master/src/M40002/M40002_C5.lean#L453
You want -- closed interval is compact
Jason KY. (Feb 12 2020 at 20:40):
Ah yes, that's what I want :D
Johan Commelin (Feb 12 2020 at 20:40):
Two remarks: (1) Do you know about the lean formatter that Patrick wrote? Kevin used it for the Sandwich theorem at some point.
Johan Commelin (Feb 12 2020 at 20:41):
If you sprinkle some comments in your proofs, that could turn this into a beautiful page
Johan Commelin (Feb 12 2020 at 20:42):
(2) Do you know about simp
? You have lots of theorems of the form slightly_complicated = easier
. If you tag them with @[simp]
then the simplifier can use them when you call the simp
tactic.
Jason KY. (Feb 12 2020 at 20:42):
Yeah! I formalised our intro module using it!
I think this was an earlier version
http://wwwf.imperial.ac.uk/~buzzard/M40001/html/M40001/M40001_4.html
Johan Commelin (Feb 12 2020 at 20:43):
Nice
Jason KY. (Feb 12 2020 at 20:43):
(2) Do you know about
simp
? You have lots of theorems of the formslightly_complicated = easier
. If you tag them with@[simp]
then the simplifier can use them when you call thesimp
tactic.
I don't know why but simp
seems to slow my pc down quite a lot so I try to avoid it.
Jason KY. (Feb 12 2020 at 20:43):
Is there a way to make it go faster?
Johan Commelin (Feb 12 2020 at 20:43):
Ok, I see.
Johan Commelin (Feb 12 2020 at 20:43):
Do you have a pre-compiled mathlib?
Johan Commelin (Feb 12 2020 at 20:43):
I would assume so. I think otherwise you would see other slowdowns already.
Jason KY. (Feb 12 2020 at 20:44):
I believe so, yeah
Jason KY. (Feb 12 2020 at 20:44):
I followed all the steps on the website atleast
Johan Commelin (Feb 12 2020 at 20:44):
I'm not an expert on such performance issues. But simp
should make a pc so slow that it becomes annoying
Johan Commelin (Feb 12 2020 at 20:45):
Unless your pc is > 10 yrs old.
Jason KY. (Feb 12 2020 at 20:46):
I normally just use simp and then convert it back with set_option trace.simplify.rewrite true
so it becomes fast again
Johan Commelin (Feb 12 2020 at 20:46):
There is squeeze_simp
to tell you what simp
did
Johan Commelin (Feb 12 2020 at 20:47):
You can then call simp only [foo, bar]
which is usually an order of magnitude faster than simp
Jason KY. (Feb 12 2020 at 20:47):
Ah! I'm gonna try it out
Jason KY. (Feb 12 2020 at 20:48):
Nice! That's way better than writing set_option trace.simplify.rewrite true
every time
Kevin Buzzard (Feb 12 2020 at 21:31):
Two remarks: (1) Do you know about the lean formatter that Patrick wrote? Kevin used it for the Sandwich theorem at some point.
Jason has written a bunch of stuff in the format of Patrick's formatter, but we couldn't get the formatter to work :-( https://github.com/leanprover-community/format_lean/issues/7
Elizabeth (Feb 12 2020 at 21:31):
OMG!!! Thank you very much!!! It really helps! (Good luck for tomorrow's test @Jason KY. :))))
Last updated: Dec 20 2023 at 11:08 UTC