Zulip Chat Archive

Stream: new members

Topic: Inverse power mul


Colin Jones ⚛️ (Mar 18 2025 at 01:57):

What is the easiest way to prove this:

example (x : ) : x⁻¹ ^ 2 = x ^ (-2:) := by
  simp only [inv_pow]

Aaron Liu (Mar 18 2025 at 02:10):

No idea if this is the "easiest"

import Mathlib

example (x : ) : x⁻¹ ^ 2 = x ^ (-2:) := by
  conv => enter [2, 2]; equals Int.cast (-Nat.cast 2) => simp
  rw [Real.rpow_intCast, zpow_neg, zpow_natCast, inv_pow]

Julian Berman (Mar 18 2025 at 02:18):

import Mathlib
example (x : ) : x⁻¹ ^ 2 = x ^ (-2:) := by
   norm_cast
   simp only [inv_pow, zpow_negSucc]

Colin Jones ⚛️ (Mar 18 2025 at 02:48):

Thank you! How about this?

example (x : ) (h : 0 < x) : x ^ (-10:) = 1 / x ^ (10:) := by
  rw?

Edward van de Meent (Mar 18 2025 at 05:45):

@loogle ?a ^ (-?b : Real), "rpow"

loogle (Mar 18 2025 at 05:45):

:search: Real.rpow_neg_one, Real.rpow_neg, and 30 more

Edward van de Meent (Mar 18 2025 at 05:52):

docs#Real.rpow_neg, docs#Real.inv_rpow, and docs#inv_eq_one_div should help you here. Depending on the operator precedence, you may not need the second one.


Last updated: May 02 2025 at 03:31 UTC