Zulip Chat Archive
Stream: new members
Topic: Inverse power mul
Colin Jones ⚛️ (Mar 18 2025 at 01:57):
What is the easiest way to prove this:
example (x : ℝ) : x⁻¹ ^ 2 = x ^ (-2:ℝ) := by
simp only [inv_pow]
Aaron Liu (Mar 18 2025 at 02:10):
No idea if this is the "easiest"
import Mathlib
example (x : ℝ) : x⁻¹ ^ 2 = x ^ (-2:ℝ) := by
conv => enter [2, 2]; equals Int.cast (-Nat.cast 2) => simp
rw [Real.rpow_intCast, zpow_neg, zpow_natCast, inv_pow]
Julian Berman (Mar 18 2025 at 02:18):
import Mathlib
example (x : ℝ) : x⁻¹ ^ 2 = x ^ (-2:ℝ) := by
norm_cast
simp only [inv_pow, zpow_negSucc]
Colin Jones ⚛️ (Mar 18 2025 at 02:48):
Thank you! How about this?
example (x : ℝ) (h : 0 < x) : x ^ (-10:ℝ) = 1 / x ^ (10:ℝ) := by
rw?
Edward van de Meent (Mar 18 2025 at 05:45):
@loogle ?a ^ (-?b : Real), "rpow"
loogle (Mar 18 2025 at 05:45):
:search: Real.rpow_neg_one, Real.rpow_neg, and 30 more
Edward van de Meent (Mar 18 2025 at 05:52):
docs#Real.rpow_neg, docs#Real.inv_rpow, and docs#inv_eq_one_div should help you here. Depending on the operator precedence, you may not need the second one.
Last updated: May 02 2025 at 03:31 UTC