Zulip Chat Archive

Stream: new members

Topic: Is this any theorems to solve this problem


yulia wang (Jul 10 2025 at 13:16):

I have some difficulities in proving sum_simplex_points_vsub_points_i_eq_sum_faceOpposite_points_i_vsub_points_i , Is this any theorems to solve this problem?

theorem sum_simplex_points_vsub_points_i_eq_sum_faceOpposite_points_i_vsub_points_i (s : Simplex  P n) (i : Fin (n + 1)) :
   x, ((s.faceOpposite i).points x -ᵥ s.points i) =  x, (s.points x -ᵥ s.points i) - (s.points i -ᵥ s.points i) := by
  have h: (Set.range (s.faceOpposite i).points)  {s.points i} = Set.range s.points := by
    simp only [range_faceOpposite_points, Set.union_singleton]
    exact Set.insert_image_compl_eq_range s.points i
  sorry

Ruben Van de Velde (Jul 10 2025 at 13:34):

Please edit your message so the code is a #mwe (you're missing at least the imports)

yulia wang (Jul 10 2025 at 13:48):

import Mathlib.Geometry.Euclidean.Simplex
import Mathlib.Analysis.Convex.Combination
import Mathlib.Analysis.Normed.Affine.Convex
noncomputable section
namespace Affine
open Finset AffineSubspace EuclideanGeometry
variable {V : Type*} {P : Type*} [NormedAddCommGroup V] [InnerProductSpace  V]
  [MetricSpace P] [NormedAddTorsor V P]
variable {n : }
namespace Simplex
abbrev centroid  {n : } (t : Affine.Simplex  P n) : P :=
  Finset.univ.centroid  t.points
theorem sum_simplex_points_vsub_points_i_eq_sum_faceOpposite_points_i_vsub_points_i (s : Simplex  P n) (i : Fin (n + 1)) :
   x, ((s.faceOpposite i).points x -ᵥ s.points i) =  x, (s.points x -ᵥ s.points i) - (s.points i -ᵥ s.points i) := by
  have h: (Set.range (s.faceOpposite i).points)  {s.points i} = Set.range s.points := by
    simp only [range_faceOpposite_points, Set.union_singleton]
    exact Set.insert_image_compl_eq_range s.points i
  sorry

Last updated: Dec 20 2025 at 21:32 UTC