Zulip Chat Archive
Stream: new members
Topic: Is this any theorems to solve this problem
yulia wang (Jul 10 2025 at 13:16):
I have some difficulities in proving sum_simplex_points_vsub_points_i_eq_sum_faceOpposite_points_i_vsub_points_i , Is this any theorems to solve this problem?
theorem sum_simplex_points_vsub_points_i_eq_sum_faceOpposite_points_i_vsub_points_i (s : Simplex ℝ P n) (i : Fin (n + 1)) :
∑ x, ((s.faceOpposite i).points x -ᵥ s.points i) = ∑ x, (s.points x -ᵥ s.points i) - (s.points i -ᵥ s.points i) := by
have h: (Set.range (s.faceOpposite i).points) ∪ {s.points i} = Set.range s.points := by
simp only [range_faceOpposite_points, Set.union_singleton]
exact Set.insert_image_compl_eq_range s.points i
sorry
Ruben Van de Velde (Jul 10 2025 at 13:34):
Please edit your message so the code is a #mwe (you're missing at least the imports)
yulia wang (Jul 10 2025 at 13:48):
import Mathlib.Geometry.Euclidean.Simplex
import Mathlib.Analysis.Convex.Combination
import Mathlib.Analysis.Normed.Affine.Convex
noncomputable section
namespace Affine
open Finset AffineSubspace EuclideanGeometry
variable {V : Type*} {P : Type*} [NormedAddCommGroup V] [InnerProductSpace ℝ V]
[MetricSpace P] [NormedAddTorsor V P]
variable {n : ℕ}
namespace Simplex
abbrev centroid {n : ℕ} (t : Affine.Simplex ℝ P n) : P :=
Finset.univ.centroid ℝ t.points
theorem sum_simplex_points_vsub_points_i_eq_sum_faceOpposite_points_i_vsub_points_i (s : Simplex ℝ P n) (i : Fin (n + 1)) :
∑ x, ((s.faceOpposite i).points x -ᵥ s.points i) = ∑ x, (s.points x -ᵥ s.points i) - (s.points i -ᵥ s.points i) := by
have h: (Set.range (s.faceOpposite i).points) ∪ {s.points i} = Set.range s.points := by
simp only [range_faceOpposite_points, Set.union_singleton]
exact Set.insert_image_compl_eq_range s.points i
sorry
Last updated: Dec 20 2025 at 21:32 UTC