Zulip Chat Archive

Stream: new members

Topic: More theorems!! integral less than equal integral ?


Arshak Parsa (Aug 22 2024 at 22:11):

I came back with more theorems! :)
Are any of these theorems provable?

import Mathlib

open MeasureTheory Topology ProbabilityTheory

lemma integral_le_integral (f :   ) (g :   ) (hpf : x, 0  f x) (hle : x, g x  f x) (hi : Integrable f) :  (x : ), g x   (x : ), f x := by
  sorry

lemma Integrable.forall_le_integrable (f :   ) (g :   ) (hle : x, g x  f x) (hi : Integrable f) : Integrable g := by
  sorry

lemma HasFiniteIntegral.indicator (f :   ) (E : Set ) (hfin : Integrable f) : HasFiniteIntegral (E.indicator f) := by
  -- I need the above theorems to prove this
  rw [Integrable] at hfin
  rw [HasFiniteIntegral]
  sorry

this might be helpful. (btw I don't understand it and it has an extra assumption integral f =0 )

Luigi Massacci (Aug 23 2024 at 08:51):

@loogle integral_mono

loogle (Aug 23 2024 at 08:51):

:exclamation: unknown identifier 'integral_mono'
Did you mean "integral_mono", MeasureTheory.integral_mono, or something else?

Luigi Massacci (Aug 23 2024 at 08:59):

For the first one you definitely need to add an hypothesis that g is integrable, unless you meant the positivity hypothesis for g instead of f (then it should work)

Luigi Massacci (Aug 23 2024 at 09:01):

The second one is not true, just take g1g \equiv -1 and ff you favourite positive integrable function

Luigi Massacci (Aug 23 2024 at 09:50):

For no.3, @loogle “integrable_indicator”

Luigi Massacci (Aug 23 2024 at 09:51):

@loogle integrable_indicator

loogle (Aug 23 2024 at 09:51):

:exclamation: <input>:1:0: expected end of input

Henrik Böving (Aug 23 2024 at 09:51):

@loogle "integrable_indicator"

loogle (Aug 23 2024 at 09:52):

:search: MeasureTheory.IntegrableOn.integrable_indicator, MeasureTheory.integrable_indicator_iff, and 1 more

Luigi Massacci (Aug 23 2024 at 09:52):

@loogle integrable_indicator

loogle (Aug 23 2024 at 09:52):

:exclamation: unknown identifier 'integrable_indicator'
Did you mean "integrable_indicator" or MeasureTheory.IntegrableOn.integrable_indicator?

Arshak Parsa (Aug 23 2024 at 10:17):

integrable_indicator requires the assumption of measurablity. I don't see why it needs that. If the integral of f over R is finite, then how could the integral of E.indicator f become infinite? (Assume f is positive everywhere)

Arshak Parsa (Aug 23 2024 at 10:20):

Also, g is positive, too (Sorry, I forgot to mention)
Actually, I want to replace g with E.indicator f to prove the third one

Arshak Parsa (Aug 23 2024 at 10:32):

I also managed to prove a lintegral version of the first one :

lemma lintegral_le_lintegral (f :   ) (g :   ) (hle : x, g x  f x) (hi : Integrable f) : ∫⁻  (x : ), ENNReal.ofReal (g x)  ∫⁻ (x : ), ENNReal.ofReal (f x)  := by
  set f' :   ENNReal := fun r => ENNReal.ofReal (f r)
  set g' :   ENNReal := fun r => ENNReal.ofReal (g r)
  have hle' : x, g' x  f' x := by exact fun x  ENNReal.ofReal_le_ofReal (hle x)
  have hae' : g' ≤ᶠ[ae volume] f' := by
    rw [EventuallyLE.eq_1]
    exact ae_of_all volume hle'
  have hm : AEMeasurable f := by exact Integrable.aemeasurable hi
  have hm' : AEMeasurable f' := by exact AEMeasurable.ennreal_ofReal hm
  calc
    (∫⁻  (x : ), g' x)  (∫⁻ (a : ), g' a) + 1 *  {x | g' x + 1  f' x} := by exact le_self_add
    _  (∫⁻  (x : ), f' x) := by exact lintegral_add_mul_meas_add_le_le_lintegral hae' hm' 1

I'm still trying to use this theorem to prove integral_le_integral...

Arshak Parsa (Aug 23 2024 at 10:35):

I modified the first one, (f is also possitive and it is a probability density function in fact!)

lemma integral_le_integral (f :   ) (g :   ) (hpg : x, 0  g x) (hle : x, g x  f x) (hi : Integrable f) :  (x : ), g x   (x : ), f x := by
  sorry

Etienne Marion (Aug 23 2024 at 10:52):

docs#MeasureTheory.integral_mono_of_nonneg

Etienne Marion (Aug 23 2024 at 10:55):

docs#Set.indicator_le'


Last updated: May 02 2025 at 03:31 UTC