Zulip Chat Archive
Stream: new members
Topic: More theorems!! integral less than equal integral ?
Arshak Parsa (Aug 22 2024 at 22:11):
I came back with more theorems! :)
Are any of these theorems provable?
import Mathlib
open MeasureTheory Topology ProbabilityTheory
lemma integral_le_integral (f : ℝ → ℝ) (g : ℝ → ℝ) (hpf : ∀x, 0 ≤ f x) (hle : ∀x, g x ≤ f x) (hi : Integrable f) : ∫ (x : ℝ), g x ≤ ∫ (x : ℝ), f x := by
sorry
lemma Integrable.forall_le_integrable (f : ℝ → ℝ) (g : ℝ → ℝ) (hle : ∀x, g x ≤ f x) (hi : Integrable f) : Integrable g := by
sorry
lemma HasFiniteIntegral.indicator (f : ℝ → ℝ) (E : Set ℝ) (hfin : Integrable f) : HasFiniteIntegral (E.indicator f) := by
-- I need the above theorems to prove this
rw [Integrable] at hfin
rw [HasFiniteIntegral]
sorry
this might be helpful. (btw I don't understand it and it has an extra assumption integral f =0
)
Luigi Massacci (Aug 23 2024 at 08:51):
@loogle integral_mono
loogle (Aug 23 2024 at 08:51):
:exclamation: unknown identifier 'integral_mono'
Did you mean "integral_mono"
, MeasureTheory.integral_mono
, or something else?
Luigi Massacci (Aug 23 2024 at 08:59):
For the first one you definitely need to add an hypothesis that g is integrable, unless you meant the positivity hypothesis for g instead of f (then it should work)
Luigi Massacci (Aug 23 2024 at 09:01):
The second one is not true, just take and you favourite positive integrable function
Luigi Massacci (Aug 23 2024 at 09:50):
For no.3, @loogle “integrable_indicator”
Luigi Massacci (Aug 23 2024 at 09:51):
@loogle integrable_indicator
loogle (Aug 23 2024 at 09:51):
:exclamation: <input>:1:0: expected end of input
Henrik Böving (Aug 23 2024 at 09:51):
@loogle "integrable_indicator"
loogle (Aug 23 2024 at 09:52):
:search: MeasureTheory.IntegrableOn.integrable_indicator, MeasureTheory.integrable_indicator_iff, and 1 more
Luigi Massacci (Aug 23 2024 at 09:52):
@loogle integrable_indicator
loogle (Aug 23 2024 at 09:52):
:exclamation: unknown identifier 'integrable_indicator'
Did you mean "integrable_indicator"
or MeasureTheory.IntegrableOn.integrable_indicator
?
Arshak Parsa (Aug 23 2024 at 10:17):
integrable_indicator
requires the assumption of measurablity. I don't see why it needs that. If the integral of f
over R is finite, then how could the integral of E.indicator f
become infinite? (Assume f is positive everywhere)
Arshak Parsa (Aug 23 2024 at 10:20):
Also, g
is positive, too (Sorry, I forgot to mention)
Actually, I want to replace g
with E.indicator f
to prove the third one
Arshak Parsa (Aug 23 2024 at 10:32):
I also managed to prove a lintegral
version of the first one :
lemma lintegral_le_lintegral (f : ℝ → ℝ) (g : ℝ → ℝ) (hle : ∀x, g x ≤ f x) (hi : Integrable f) : ∫⁻ (x : ℝ), ENNReal.ofReal (g x) ≤ ∫⁻ (x : ℝ), ENNReal.ofReal (f x) := by
set f' : ℝ → ENNReal := fun r => ENNReal.ofReal (f r)
set g' : ℝ → ENNReal := fun r => ENNReal.ofReal (g r)
have hle' : ∀x, g' x ≤ f' x := by exact fun x ↦ ENNReal.ofReal_le_ofReal (hle x)
have hae' : g' ≤ᶠ[ae volume] f' := by
rw [EventuallyLE.eq_1]
exact ae_of_all volume hle'
have hm : AEMeasurable f := by exact Integrable.aemeasurable hi
have hm' : AEMeasurable f' := by exact AEMeasurable.ennreal_ofReal hm
calc
(∫⁻ (x : ℝ), g' x) ≤ (∫⁻ (a : ℝ), g' a) + 1 * ℙ {x | g' x + 1 ≤ f' x} := by exact le_self_add
_ ≤ (∫⁻ (x : ℝ), f' x) := by exact lintegral_add_mul_meas_add_le_le_lintegral hae' hm' 1
I'm still trying to use this theorem to prove integral_le_integral
...
Arshak Parsa (Aug 23 2024 at 10:35):
I modified the first one, (f is also possitive and it is a probability density function in fact!)
lemma integral_le_integral (f : ℝ → ℝ) (g : ℝ → ℝ) (hpg : ∀x, 0 ≤ g x) (hle : ∀x, g x ≤ f x) (hi : Integrable f) : ∫ (x : ℝ), g x ≤ ∫ (x : ℝ), f x := by
sorry
Etienne Marion (Aug 23 2024 at 10:52):
docs#MeasureTheory.integral_mono_of_nonneg
Etienne Marion (Aug 23 2024 at 10:55):
Last updated: May 02 2025 at 03:31 UTC