Zulip Chat Archive
Stream: new members
Topic: Nonarchimedean property of padic
Sophia Rodriguez (Mar 12 2025 at 05:56):
Hi there!
I want to show something like where s is a Finset of Nat and . (that is, the Finset.sum version of padicNormE.nonarchimedean'
).
I found this IsNonarchimedean.finset_image_add_of_nonempty
, but I can not fill in the parameters.
Sophia Rodriguez (Mar 12 2025 at 06:01):
To illustrate the issue better, here is my code
variable {p : ℕ} [Fact p.Prime]
variable (f : ℕ → ℚ_[p])
open Topology Filter
local notation "partial_sum" => fun s ↦ ∑ b : Finset.range s, f b
lemma padic_Nonarch : IsNonarchimedean (norm (E := ℚ_[p])) :=
IsUltrametricDist.isNonarchimedean_norm
lemma tends_to (h : (Tendsto f atTop (𝓝 0))) : IsCauSeq norm partial_sum := by
delta IsCauSeq
intro ε hε
simp only [ge_iff_le, Finset.univ_eq_attach]
apply Metric.tendsto_atTop.1 at h
obtain ⟨N, hN⟩ := h ε hε
use N
intro j hj
have conv1 : ∑ b ∈ (Finset.range j).attach, f ↑b = ∑ b ∈ (Finset.range j), f b :=
Finset.sum_attach (Finset.range j) f
have conv2 : ∑ b ∈ (Finset.range N).attach, f ↑b = ∑ b ∈ (Finset.range N), f b :=
Finset.sum_attach (Finset.range N) f
rw [conv1, conv2]
rw [Finset.sum_range_sub_sum_range hj]
simp only [gt_iff_lt]
have := IsNonarchimedean.finset_image_add_of_nonempty padic_Nonarch f (t := Finset.filter (fun k ↦ N ≤ k) (Finset.range j)) (by sorry)
David Loeffler (Mar 12 2025 at 06:38):
I think you may be looking for docs#IsUltrametricDist.exists_norm_finset_sum_le_of_nonempty (or one of the other variants in the same file).
Sophia Rodriguez (Mar 12 2025 at 07:28):
exactly! thanks
Last updated: May 02 2025 at 03:31 UTC