Zulip Chat Archive
Stream: new members
Topic: Proof of simple inequality
Alex Gu (Oct 17 2024 at 22:48):
I was trying to prove the following inequality
image.png
I came up with the following proof, but it seems overly verbose, and I suspect things could be made much simpler. Could somebody suggest places I could have simplified things? Thanks a lot!
theorem inequality (x y z : ℝ)
(hx : x > 1) (hy : y > 1) (hz : z > 1)
(h : 1/x + 1/y + 1/z = 2) :
√(x + y + z) ≥ √(x - 1) + √(y - 1) + √(z - 1) := by
suffices x + y + z ≥ (√(x - 1) + √(y - 1) + √(z - 1))^2 by
have h : Real.sqrt (x + y + z) ≥ Real.sqrt ((√(x - 1) + √(y - 1) + √(z - 1))^2) := Real.sqrt_le_sqrt this
rw [Real.sqrt_sq] at h
exact h
apply add_nonneg
apply add_nonneg
all_goals apply Real.sqrt_nonneg
have h : (x-1)/x+(y-1)/y+(z-1)/z = 1 := by
rw [sub_div, sub_div, sub_div]
rw [div_self, div_self, div_self]
linarith
all_goals linarith
suffices (x + y + z) * ((x-1)/x+(y-1)/y+(z-1)/z) ≥ (√(x-1)+√(y-1)+√(z-1))^2 by
rw [h] at this
linarith
convert_to (∑ i : Fin 3, (![√x, √y, √z] i)^2) * (∑ i : Fin 3, (![√((x-1)/x), √((y-1)/y), √((z-1)/z)] i)^2) ≥ (∑ i : Fin 3, ![√x, √y, √z] i * (![√((x-1)/x), √((y-1)/y), √((z-1)/z)] i))^2
· simp [Fin.sum_univ_three]
rw [Real.sq_sqrt, Real.sq_sqrt, Real.sq_sqrt, Real.sq_sqrt, Real.sq_sqrt, Real.sq_sqrt]
rw [sub_div, div_self]
rw [sub_nonneg]
rw [one_div_le]
linarith; linarith; linarith; linarith
rw [sub_div, div_self]
rw [sub_nonneg]
rw [one_div_le]
linarith; linarith; linarith; linarith
rw [sub_div, div_self]
rw [sub_nonneg]
rw [one_div_le]
linarith; linarith; linarith; linarith
linarith; linarith; linarith
. simp [Fin.sum_univ_three]
congr
rw [<- Real.sqrt_mul']
congr
field_simp
rw [sub_div, div_self, sub_nonneg, one_div_le, one_div_one]
linarith; linarith; linarith; linarith
field_simp
field_simp
apply Finset.sum_mul_sq_le_sq_mul_sq
Yuyuan (Lance) Ouyang (Oct 18 2024 at 06:15):
Other experts should simplify much better, but below is just my attempts based on my limited understanding.
import Mathlib
theorem inequality (x y z : ℝ)
(hx : x > 1) (hy : y > 1) (hz : z > 1)
(h : 1/x + 1/y + 1/z = 2) :
√(x + y + z) ≥ √(x - 1) + √(y - 1) + √(z - 1) := by
suffices x + y + z ≥ (√(x - 1) + √(y - 1) + √(z - 1))^2 by
exact Real.le_sqrt_of_sq_le this
have h : (x-1)/x+(y-1)/y+(z-1)/z = 1 := by
field_simp
field_simp at h
linarith
suffices (x + y + z) * ((x-1)/x+(y-1)/y+(z-1)/z) ≥ (√(x-1)+√(y-1)+√(z-1))^2 by
rw [h] at this
linarith
convert_to (∑ i : Fin 3, (![√x, √y, √z] i)^2) * (∑ i : Fin 3, (![√((x-1)/x), √((y-1)/y), √((z-1)/z)] i)^2) ≥ (∑ i : Fin 3, ![√x, √y, √z] i * (![√((x-1)/x), √((y-1)/y), √((z-1)/z)] i))^2
· simp [Fin.sum_univ_three]
field_simp
rw [Real.sq_sqrt, Real.sq_sqrt, Real.sq_sqrt]
all_goals simp
all_goals linarith
. simp [Fin.sum_univ_three]
field_simp
apply Finset.sum_mul_sq_le_sq_mul_sq
Last updated: May 02 2025 at 03:31 UTC