Zulip Chat Archive

Stream: new members

Topic: Prove an ideal is Prime


Chengyan Hu (Oct 22 2025 at 20:03):

Hi! I missed at a strange part, and I believe it should not be hard. I just want to prove an Ideal is prime, given that it's prime in R1, and R1 R2 are isomorphic.

import Mathlib
open Field
open LinearMap Module
open scoped NumberField
open IsDedekindDomain
open NumberField

/-- The height-one prime of `OQ` lying over the rational prime `p`, i.e. `(p)`. -/
noncomputable def placeOfNat (p : โ„•) [hp : Fact p.Prime] :
    HeightOneSpectrum (๐“ž โ„š):= by
    let I : Ideal (๐“ž โ„š) := Ideal.span ({algebraMap โ„ค (๐“ž โ„š) p})
    have e := RingOfIntegers.equiv (K := โ„š) โ„ค
    have hpZ : Prime (p : โ„ค) := by
      simpa [Int.prime_iff_natAbs_prime] using hp.out
    have hI : Prime I := by
      sorry
    refine HeightOneSpectrum.ofPrime hI

Aaron Liu (Oct 22 2025 at 20:17):

well I got a proof

import Mathlib
open Field
open LinearMap Module
open scoped NumberField
open IsDedekindDomain
open NumberField

/-- The height-one prime of `OQ` lying over the rational prime `p`, i.e. `(p)`. -/
noncomputable def placeOfNat (p : โ„•) [hp : Fact p.Prime] :
    HeightOneSpectrum (๐“ž โ„š):= by
    let I : Ideal (๐“ž โ„š) := Ideal.span ({algebraMap โ„ค (๐“ž โ„š) p})
    have e := RingOfIntegers.equiv (K := โ„š) โ„ค
    have hpZ : Prime (p : โ„ค) := by
      simpa [Int.prime_iff_natAbs_prime] using hp.out
    have hI : Prime I := by
      unfold I
      apply Ideal.prime_of_isPrime
      ยท rw [ne_eq, Ideal.span_singleton_eq_bot]
        simp [hp.elim.ne_zero]
      rw [โ† Set.image_singleton, โ† Ideal.map_span]
      have he : e.symm = algebraMap โ„ค (๐“ž โ„š) := by
        subsingleton
      rw [โ† he]
      -- I shouldn't have to do this step
      change (Ideal.map e.symm (Ideal.span {(p : โ„ค)})).IsPrime
      rw [Ideal.map_symm]
      apply Ideal.comap_isPrime
    refine HeightOneSpectrum.ofPrime hI

Chengyan Hu (Oct 22 2025 at 20:41):

Thanks a lot! That's clever.

Kevin Buzzard (Oct 22 2025 at 20:41):

Oh we have this in FLT: https://github.com/ImperialCollegeLondon/FLT/blob/main/FLT/Mathlib/RingTheory/DedekindDomain/Ideal/Lemmas.lean

Chengyan Hu (Oct 22 2025 at 20:45):

Great! Out of expection


Last updated: Dec 20 2025 at 21:32 UTC