Zulip Chat Archive
Stream: new members
Topic: Restrict a MeasurableSpace to a set
Iocta (Dec 28 2024 at 21:30):
What do I need to do here?
import Mathlib
namespace MeasureTheory
open MeasurableSpace
variable {α : Type} {s : Set (Set α)} {m : MeasurableSpace α}
/-
Let m be a measurable space on α and (y : Set α).
Then the restriction of m to y -- {a ∩ y such that a ∈ m} is also a measurable set.
-/
def measurable_space_subtype (y : Set α) : MeasurableSpace {x // x ∈ y} where
MeasurableSet' s := ∃ a, MeasurableSet[m] a ∧ s = {x | x ∈ a}
measurableSet_empty := by {
simp only [Set.mem_inter_iff]
use ∅
simp_all only [MeasurableSet.empty, Set.image_empty, Set.mem_empty_iff_false, Set.setOf_false, and_self]
}
measurableSet_compl t ht := by {
-- reduce at *
-- simp only [Subtype.exists, exists_and_right, exists_eq_right, exists_eq_right', imp_false] at *
reduce at *
simp only [Subtype.exists, exists_and_right, exists_eq_right, exists_eq_right', imp_false] at *
/-
α : Type
J s : Set (Set α)
m : MeasurableSpace α
y : α → Prop
t : { x // x ∈ y } → Prop
ht : m.1 fun x ↦ ∃ (x_1 : x ∈ y), t ⟨x, ⋯⟩
⊢ m.1 fun x ↦ ∃ (x_1 : x ∈ y), ⟨x, ⋯⟩ ∉ t
-/
}
measurableSet_iUnion f := _
Eric Wieser (Dec 28 2024 at 21:56):
def measurable_space_subtype (y : Set α) : MeasurableSpace {x // x ∈ y} :=
MeasurableSpace.comap Subtype.val ‹_›
Eric Wieser (Dec 28 2024 at 21:57):
Assuming this produces the sets you want
Etienne Marion (Dec 28 2024 at 22:03):
It is docs#Subtype.instMeasurableSpace
Last updated: May 02 2025 at 03:31 UTC