Zulip Chat Archive
Stream: new members
Topic: Rewriting hypotheses in (d)ites
Yakov Pechersky (Oct 01 2020 at 02:36):
What could be a short proof for this (and similar statements)?
lemma dif_symm {p q : Prop} {x y : ℕ} (h : dite (x = y) (λ _, p) (λ _, q)) :
dite (y = x) (λ _, p) (λ _, q) := sorry
Yury G. Kudryashov (Oct 01 2020 at 02:57):
Use split_ifs
?
Yury G. Kudryashov (Oct 01 2020 at 02:58):
In this particular case: by simpa [eq_comm]
Yakov Pechersky (Oct 01 2020 at 02:58):
Ah eq_comm
is what I was looking for
Yury G. Kudryashov (Oct 01 2020 at 03:00):
There might be a problem if the types inside dite
actually depend on the condition (or only for Type
-values dite
s?)
Yury G. Kudryashov (Oct 01 2020 at 03:01):
I don't remember details.
Yury G. Kudryashov (Oct 01 2020 at 03:01):
In case of an error, I just use split_ifs
Yury G. Kudryashov (Oct 01 2020 at 03:01):
(or by_cases
+ simp [dif_pos ...]
)
Yakov Pechersky (Oct 01 2020 at 03:06):
The larger issue is that this is my goal after a wlog
. I could for sure solve it without the wlog
, but thought it'd be cleaner with.
/-
R : Type u_1,
_inst_1 : field R,
n : ℕ,
A : matrix (fin (n + 3)) (fin (n + 3)) R,
x y : fin (n + 2 + 1),
H : y ≤ x,
this :
dite (y = x) (λ (_x : y = x), 0)
(λ (h : ¬y = x),
-A 0 x * (-1) ^ ↑x * A 1 y * (-1) ^ ↑(x.pred_above y h) * det' ((A.drop 0 x).drop 0 (x.pred_above y h))) =
dite (x = y) (λ (_x : x = y), 0)
(λ (h : ¬x = y),
A 1 y * (-1) ^ ↑y * A 0 x * (-1) ^ ↑(y.pred_above x h) * det' ((A.drop 0 y).drop 0 (y.pred_above x h)))
⊢ dite (x = y) (λ (_x : x = y), 0)
(λ (h : ¬x = y),
-A 0 y * (-1) ^ ↑y * A 1 x * (-1) ^ ↑(y.pred_above x h) * det' ((A.drop 0 y).drop 0 (y.pred_above x h))) =
dite (y = x) (λ (_x : y = x), 0)
(λ (h : ¬y = x),
A 1 x * (-1) ^ ↑x * A 0 y * (-1) ^ ↑(x.pred_above y h) * det' ((A.drop 0 x).drop 0 (x.pred_above y h)))
-/
Yakov Pechersky (Oct 01 2020 at 03:07):
this
is just the goal with the conditions reversed.
Yakov Pechersky (Oct 01 2020 at 03:07):
Almost.
Yakov Pechersky (Oct 01 2020 at 03:10):
I'll just go back to my wlog
-free proof.
Last updated: Dec 20 2023 at 11:08 UTC