Zulip Chat Archive
Stream: new members
Topic: Sum over fin 2
Eloi (Jul 14 2020 at 11:00):
I am defining concrete subgroups of SL2(Z) by imposing conditions on the entries of matrices.
After some work, i have reduced the mul_mem'
condition to (A * B) 1 0 = A 1 0 * B 0 0 + A 1 1 * B 1 0
, but I don't know how to make progress with finite sums.
What can I do in this minimal example?
import data.fin
import data.matrix.basic
--import algebra.big_operators
variables {A B: matrix (fin 2) (fin 2) ℤ}
open_locale big_operators
lemma lem : (A * B) 1 0 = A 1 0 * B 0 0 + A 1 1 * B 1 0:=
begin
dsimp,
rw matrix.mul,
simp only,
rw matrix.dot_product,
-- I'm stuck here
-- The goal is
-- ⊢ ∑ (i : fin 2), A 1 i * B i 0
-- = A 1 0 * B 0 0 + A 1 1 * B 1 0
sorry
end
Thanks
Kenny Lau (Jul 14 2020 at 11:04):
import data.fin
import data.matrix.basic
--import algebra.big_operators
variables {A B : matrix (fin 2) (fin 2) ℤ}
open_locale big_operators
lemma lem : (A * B) 1 0 = A 1 0 * B 0 0 + A 1 1 * B 1 0 :=
show (A 1 0 * B 0 0) + (A 1 1 * B 1 0 + 0) = _, by rw add_zero
Kenny Lau (Jul 14 2020 at 11:04):
defeqs FTW
Eloi (Jul 14 2020 at 11:10):
Wow awesome!
Thanks!
Last updated: Dec 20 2023 at 11:08 UTC