Zulip Chat Archive

Stream: new members

Topic: Unable to `rw` iff lemmas


Gareth Ma (Mar 13 2024 at 07:52):

Why does the first fail and second not?

import Mathlib.Analysis.SpecialFunctions.Pow.Real

set_option autoImplicit false

open Nat hiding log sqrt
open Real Filter Asymptotics Topology

example (f :   ) : f =o[atTop] (1 :   ) := by
  /- rw [isLittleO_one_iff] /- fails -/ -/
  apply (isLittleO_one_iff _).mpr

Ruben Van de Velde (Mar 13 2024 at 07:58):

Because the lemma is about fun _ => 1 and your example is about 1 : _ → _

Ruben Van de Velde (Mar 13 2024 at 07:58):

Those are equal, but not syntactically so

Ruben Van de Velde (Mar 13 2024 at 07:58):

import Mathlib.Analysis.SpecialFunctions.Pow.Real

set_option autoImplicit false

open Nat hiding log sqrt
open Real Filter Asymptotics Topology

example (f :   ) : f =o[atTop] (1 :   ) := by
  rw [Pi.one_def]
  rw [isLittleO_one_iff]
  sorry

Gareth Ma (Mar 13 2024 at 07:59):

Which one is preferred in Mathlib?

Ruben Van de Velde (Mar 13 2024 at 08:22):

I have one data point here and that is isLittleO_one_iff :)


Last updated: May 02 2025 at 03:31 UTC