Zulip Chat Archive
Stream: new members
Topic: Unable to `rw` iff lemmas
Gareth Ma (Mar 13 2024 at 07:52):
Why does the first fail and second not?
import Mathlib.Analysis.SpecialFunctions.Pow.Real
set_option autoImplicit false
open Nat hiding log sqrt
open Real Filter Asymptotics Topology
example (f : ℕ → ℝ) : f =o[atTop] (1 : ℕ → ℝ) := by
/- rw [isLittleO_one_iff] /- fails -/ -/
apply (isLittleO_one_iff _).mpr
Ruben Van de Velde (Mar 13 2024 at 07:58):
Because the lemma is about fun _ => 1
and your example is about 1 : _ → _
Ruben Van de Velde (Mar 13 2024 at 07:58):
Those are equal, but not syntactically so
Ruben Van de Velde (Mar 13 2024 at 07:58):
import Mathlib.Analysis.SpecialFunctions.Pow.Real
set_option autoImplicit false
open Nat hiding log sqrt
open Real Filter Asymptotics Topology
example (f : ℕ → ℝ) : f =o[atTop] (1 : ℕ → ℝ) := by
rw [Pi.one_def]
rw [isLittleO_one_iff]
sorry
Gareth Ma (Mar 13 2024 at 07:59):
Which one is preferred in Mathlib?
Ruben Van de Velde (Mar 13 2024 at 08:22):
I have one data point here and that is isLittleO_one_iff :)
Last updated: May 02 2025 at 03:31 UTC