Zulip Chat Archive
Stream: new members
Topic: brec_on and below
Sayantan Majumdar (Apr 24 2020 at 18:46):
I was checking out the nat.below and nat.brec_on things and I was having some problems with a few proofs
def fib1 : ℕ → ℕ | 0 := 1 | 1 := 1 | (n + 2) := fib1 (n + 1) + fib1 n def fib2 : ℕ → ℕ := assume n : ℕ, @nat.brec_on (λ n : ℕ, ℕ) n ( assume n : ℕ, assume h : nat.below (λ n : ℕ, ℕ) n, ( λ (n : ℕ) (h : nat.below (λ n : ℕ, ℕ) n), (@nat.cases_on (λ n : ℕ, nat.below (λ n : ℕ, ℕ) n → ℕ) n (λ h : nat.below (λ n : ℕ, ℕ) 0, 1) ( assume n : ℕ, assume h : nat.below (λ n : ℕ, ℕ) (nat.succ n), (@nat.cases_on (λ n : ℕ, nat.below (λ n : ℕ, ℕ) (nat.succ n) → ℕ) n (λ h : nat.below (λ n : ℕ, ℕ) 1, 1) ( assume n : ℕ, assume h : nat.below (λ n : ℕ, ℕ) (nat.succ (nat.succ n)), (h.fst.fst + h.fst.snd.fst.fst) )) h )) h ) n h ) #reduce fib1 0 #reduce fib1 1 #reduce fib1 2 #reduce fib1 3 #reduce fib1 4 #reduce fib1 5 #reduce fib1 7 #reduce fib2 0 #reduce fib2 1 #reduce fib2 2 #reduce fib2 3 #reduce fib2 4 #reduce fib2 5 #reduce fib2 7 example : ∀ n : ℕ, fib1 n = fib2 n | 0 := rfl | 1 := rfl | (n + 2) := sorry
Sayantan Majumdar (Apr 24 2020 at 18:46):
the (n + 2) := sorry
part
Last updated: Dec 20 2023 at 11:08 UTC