Zulip Chat Archive

Stream: new members

Topic: cardinality of Set.iUnion to sum of cardinalities (stuck)


Ilmārs Cīrulis (May 20 2025 at 13:13):

import Mathlib

theorem THM: ( r  Finset.Icc 2 7,  t  Finset.Icc 1 (500 / r ^ 3),
    {x | x = ![t, t * r, t * r ^ 2, t * r ^ 3]}).ncard = 94 := by
  sorry

Is there some lemma or something, that I'm missing?
My goal is to change these iUnion over these finite sets to sums of cardinalities over the finite sets.

Thank you!

Ilmārs Cīrulis (May 20 2025 at 13:24):

Probably will have to prove the finiteness of the sets anyway :thinking:

Aaron Liu (May 20 2025 at 13:32):

import Mathlib

theorem THM: ( r  Finset.Icc 2 7,  t  Finset.Icc 1 (500 / r ^ 3),
    {x | x = ![t, t * r, t * r ^ 2, t * r ^ 3]}).ncard = 94 := by
  have h1 : Set.PairwiseDisjoint (Finset.Icc 2 7) fun r =>
      (Finset.Icc 1 (500 / r ^ 3)).biUnion fun t => {![t, t * r, t * r ^ 2, t * r ^ 3]} := by
    sorry
  have h2 (r : Nat) : Set.PairwiseDisjoint (Finset.Icc 1 (500 / r ^ 3)) fun t =>
      ({![t, t * r, t * r ^ 2, t * r ^ 3]} : Finset (Fin 4  Nat)) := by
    sorry
  simp_rw [Set.setOf_eq_eq_singleton,  Finset.mem_coe,  Finset.coe_singleton,
     Finset.coe_biUnion, Set.ncard_coe_Finset]
  conv =>
    rw [Finset.card_biUnion h1]
    enter [1, 2, r]
    rw [Finset.card_biUnion (h2 r)]
    enter [2, t]
    rw [Finset.card_singleton]
  sorry

Ilmārs Cīrulis (May 20 2025 at 13:34):

Thank you very much! :heart:


Last updated: Dec 20 2025 at 21:32 UTC