Zulip Chat Archive
Stream: new members
Topic: commgroup
BANGJI HU (Jul 10 2024 at 08:58):
(deleted)
BANGJI HU (Jul 10 2024 at 08:59):
example{G : Type*} [hg :Group G] (h:∀(x : G), x*x=1) : CommGroup G :={
hg with
mul_comm :=by
intro x y
}
BANGJI HU (Jul 10 2024 at 09:01):
help
Ruben Van de Velde (Jul 10 2024 at 09:02):
What do you want help with?
Kevin Buzzard (Jul 10 2024 at 09:16):
What's the maths proof? Lean does not find proofs automatically, your job after intro x y
is to translate a complete maths proof into lean's language.
BANGJI HU (Jul 10 2024 at 12:54):
import Mathlib.Tactic
import Mathlib.Algebra.Group.Basic
import Mathlib.Algebra.Group.Defs
example{G : Type*} [hg :Group G] (h:∀(x : G), x*x=1) : CommGroup G :={
hg with
mul_comm :=by
intro x y
have: x*y*x*y=1 :=by rw?
have: x*y=(x*y)⁻¹:=by?
have: x*y=y⁻¹*x⁻¹ := sorry
have: x*y=x*y :=
}
BANGJI HU (Jul 10 2024 at 12:55):
i know the proof but dont know how to program.
BANGJI HU (Jul 10 2024 at 12:56):
the question is every element in G if x*x=1 then if is ablean
Eric Wieser (Jul 10 2024 at 13:22):
Your code above has invalid space characters in it
Last updated: May 02 2025 at 03:31 UTC