Zulip Chat Archive

Stream: new members

Topic: commgroup


BANGJI HU (Jul 10 2024 at 08:58):

(deleted)

BANGJI HU (Jul 10 2024 at 08:59):

example{G : Type*} [hg :Group G] (h:(x : G), x*x=1) : CommGroup G :={
   hg with
   mul_comm :=by
   intro x y

}

BANGJI HU (Jul 10 2024 at 09:01):

help

Ruben Van de Velde (Jul 10 2024 at 09:02):

What do you want help with?

Kevin Buzzard (Jul 10 2024 at 09:16):

What's the maths proof? Lean does not find proofs automatically, your job after intro x y is to translate a complete maths proof into lean's language.

BANGJI HU (Jul 10 2024 at 12:54):

import Mathlib.Tactic

import Mathlib.Algebra.Group.Basic

import Mathlib.Algebra.Group.Defs

example{G : Type*} [hg :Group G] (h:(x : G), x*x=1) : CommGroup G :={

   hg with

   mul_comm :=by

   intro x y

   have: x*y*x*y=1 :=by rw?

   have: x*y=(x*y)⁻¹:=by?

   have: x*y=y⁻¹*x⁻¹ := sorry

   have x*y=x*y      :=

}

BANGJI HU (Jul 10 2024 at 12:55):

i know the proof but dont know how to program.

BANGJI HU (Jul 10 2024 at 12:56):

the question is every element in G if x*x=1 then if is ablean

Eric Wieser (Jul 10 2024 at 13:22):

Your code above has invalid space characters in it


Last updated: May 02 2025 at 03:31 UTC