Zulip Chat Archive
Stream: new members
Topic: deterministic timeout on definition of structure
Vasily Ilin (Apr 07 2022 at 23:14):
I have the following file, which gives me deterministic timeout both on the structure
and the notation
. I can't figure out why.
import ring_theory.tensor_product
import algebra.monoid_algebra.basic
import data.polynomial.algebra_map
open_locale tensor_product
open algebra.tensor_product
variables (K : Type) [field K]
variables (V : Type) [semiring V] [algebra K V]
structure hopf_algebra extends algebra K V :=
(comul : V →ₐ[K] V ⊗ V)
(counit : V →ₐ[K] K)
(coassoc : (tensor_product.assoc K V V V) ∘ (map comul (alg_hom.id K V)) ∘ comul = map (alg_hom.id K V) comul ∘ comul)
(counit_left : (tensor_product.lid K V) ∘ (map counit (alg_hom.id K V)) ∘ comul = (alg_hom.id K V))
(counit_right : (tensor_product.rid K V) ∘ (map (alg_hom.id K V) counit) ∘ comul = (alg_hom.id K V))
(coinv : V →ₗ[K] V)
When I delete all but the comul
line in the definition, it says "Loading" for 3 minutes and says "don't know how to synthesize placeholder" for . Is anything wrong with the imports? Here is the link to the file on Github: https://github.com/leomayer1/Hopf/blob/master/src/Hopf.lean
Vasily Ilin (Apr 07 2022 at 23:20):
Update: it looks like extends algebra K V
was the culprit...
Adam Topaz (Apr 07 2022 at 23:36):
Vasily Ilin said:
Update: it looks like
extends algebra K V
was the culprit...
I think it makes sense to assume [algebra K V]
as a typeclass parameter as opposed to extending it anyway
Adam Topaz (Apr 07 2022 at 23:37):
I.e.
import ring_theory.tensor_product
import algebra.monoid_algebra.basic
import data.polynomial.algebra_map
open_locale tensor_product
open algebra.tensor_product
variables (K : Type) [field K]
variables (V : Type) [semiring V] [algebra K V]
structure hopf_algebra :=
(comul : V →ₐ[K] V ⊗ V)
(counit : V →ₐ[K] K)
(coassoc : (tensor_product.assoc K V V V) ∘ (map comul (alg_hom.id K V)) ∘ comul = map (alg_hom.id K V) comul ∘ comul)
(counit_left : (tensor_product.lid K V) ∘ (map counit (alg_hom.id K V)) ∘ comul = (alg_hom.id K V))
(counit_right : (tensor_product.rid K V) ∘ (map (alg_hom.id K V) counit) ∘ comul = (alg_hom.id K V))
(coinv : V →ₗ[K] V)
Vasily Ilin (Apr 08 2022 at 00:02):
Thanks!
Last updated: Dec 20 2023 at 11:08 UTC