Zulip Chat Archive
Stream: new members
Topic: endomorphism of a finite group G
BANGJI HU (Jul 14 2024 at 16:13):
suppose that f:G \to G is a endomorphism of a finite group G then f is automorphism iff f is injective
BANGJI HU (Jul 14 2024 at 16:16):
suppose that f:G \to G is a endomorphism of a finite group G then f is automorphism iff f is injective
BANGJI HU (Jul 14 2024 at 16:18):
import Mathlib.Algebra.Group.Basic
import Mathlib.Algebra.Group.Defs
import Mathlib.GroupTheory.OrderOfElement
import Mathlib.GroupTheory.GroupAction.Group
import Mathlib.GroupTheory.GroupAction.Hom
variables {G : Type*} [fintype G] [group G]
variables (f : G →* G)
lemma endomorphism_injective_iff_bijective : function.injective f ↔ function.bijective f :=
construction
intro hf,
exact fintype.injective_iff_bijectivef
intro hf,
exact hf
theorem endomorphism_iff_isomorphism : function.injective f ↔ is_group_hom f ∧ function.bijective f :=
construction
intro hf,
exact f.is_group_hom
exact endomorphism_injective_iff_bijective f hf
intro h,
exact h
BANGJI HU (Jul 14 2024 at 16:20):
my question is i know the proof but how can i translate to lean
Daniel Weber (Jul 14 2024 at 16:21):
Are you working in Lean 3?
Ruben Van de Velde (Jul 14 2024 at 16:25):
Clearly no, but also clearly not lean 4. What did you look at to get to this point?
Kevin Buzzard (Jul 14 2024 at 16:25):
A language model?
Last updated: May 02 2025 at 03:31 UTC