Zulip Chat Archive
Stream: new members
Topic: fin coe proof
Patrick Thomas (Sep 22 2022 at 06:00):
Is there a way forward here?
def function.update_fin
{α β : Type}
[decidable_eq α]
(σ : α → β) :
Π (n : ℕ), (fin n → α) → (fin n → β) → (α → β)
| 0 _ _ := σ
| (n + 1) f g :=
function.update
(function.update_fin n (fun (i : fin n), (f i)) (fun (i : fin n), (g i)))
(f n) (g n)
example
{α β : Type}
[decidable_eq α]
(σ : α → β)
(n : ℕ)
(xs : fin n → α)
(ys : fin n → β)
(x : α)
(h1 : ∀ (i : fin n), x ≠ xs i) :
function.update_fin σ n xs ys x = σ x :=
begin
induction n,
case nat.zero
{
unfold function.update_fin
},
case nat.succ : n ih
{
unfold function.update_fin,
specialize h1 ↑n,
simp only [function.update_noteq h1],
apply ih (fun (i : fin n), xs (↑i)) (fun (i : fin n), ys (↑i)),
intro i,
sorry
},
end
Last updated: Dec 20 2023 at 11:08 UTC