Zulip Chat Archive
Stream: new members
Topic: gsmul_int_int
Scott Morrison (Mar 07 2020 at 04:11):
argh... can anyone help with:
import algebra.group_power lemma gsmul_int_int (a b : ℤ) : gsmul a b = a * b := sorry
Kenny Lau (Mar 07 2020 at 04:33):
import algebra.group_power lemma gsmul_int_int (a b : ℤ) : gsmul a b = a * b := int.induction_on a (by rw [zero_gsmul, zero_mul]) (λ i ih, by rw [add_one_gsmul, ih, add_mul, one_mul]) (λ i ih, by rw [sub_eq_add_neg, add_gsmul, ih, neg_one_gsmul, add_mul, neg_one_mul])
Mario Carneiro (Mar 07 2020 at 05:33):
import algebra.group_power lemma gsmul_int_int (a b : ℤ) : gsmul a b = a * b := by simp [gsmul_eq_mul]
Last updated: Dec 20 2023 at 11:08 UTC