Zulip Chat Archive
Stream: new members
Topic: help with function application and equality type
Dean Young (Feb 27 2023 at 22:43):
does anyone know how to fill in sorry
in the lemma?
lemma (X : Type) (Y : Type) (Z : Type) (A : Type) (f : X → Y → Z → A) (x₁ : X) (x₂ : X) (y₁ : Y) (y₂ : Y) (z₁ : Z) (z₂ : Z) : f x₁ y₁ z₁ = f x₁ y₂ z₂ := sorry
edit: oops:
lemma (X : Type) (Y : Type) (Z : Type) (A : Type) (f : X → Y → Z → A) (x₁ : X) (x₂ : X) (y₁ : Y) (y₂ : Y) (z₁ : Z) (z₂ : Z) (p : x₁ = x₂) (q : y₁ = y₂) (r : z₁ = z₂) : f x₁ y₁ z₁ = f x₁ y₂ z₂ := sorry
Eric Wieser (Feb 27 2023 at 22:44):
What's the maths proof?
Notification Bot (Feb 27 2023 at 22:45):
This topic was moved here from #general > help with function application and equality type by Eric Wieser.
Eric Wieser (Feb 27 2023 at 22:46):
(I've moved this because the answer to your question is "this is obviously false", and explaining why feels like a #new members-type problem)
Dean Young (Feb 27 2023 at 22:49):
oops:
lemma (X : Type) (Y : Type) (Z : Type) (A : Type) (f : X → Y → Z → A) (x₁ : X) (x₂ : X) (y₁ : Y) (y₂ : Y) (z₁ : Z) (z₂ : Z) (p : x₁ = x₂) (q : y₁ = y₂) (r : z₁ = z₂) : f x₁ y₁ z₁ = f x₁ y₂ z₂ := sorry
Eric Wieser (Feb 27 2023 at 22:49):
Do you know about tactic#rewrite (aka rw
)?
Eric Wieser (Feb 27 2023 at 22:50):
Sorry, that link fails
Eric Wieser (Feb 27 2023 at 22:50):
https://leanprover-community.github.io/mathlib_docs/tactics.html#rw%20/%20rewrite
Last updated: Dec 20 2023 at 11:08 UTC