Zulip Chat Archive
Stream: new members
Topic: irreducible
Notification Bot (Mar 22 2022 at 16:47):
Artizuiala G. has marked this topic as unresolved.
Artizuiala G. (Mar 22 2022 at 16:51):
but I still need to prove these two things:
example : irreducible f :=
{ not_unit' :=
begin
intro,
cases ᾰ,
sorry,
end,
is_unit_or_is_unit' :=
begin
intros a b,
intro h1,
sorry,
end}
to prove my lemma:
lemma irreducible_of_not_root {F : Type*} [field F] (f : F[X]) (hfdeg : f.degree = 2 ∨ f.degree = 3) (hf : ∀ x, f.eval x ≠ 0) :
irreducible f :=
begin
cases hfdeg,
-- f.degree = 2 case
{ fconstructor,
-- goal 1: ¬is_unit f
{ intro,
cases ᾰ,
sorry,},
-- goal 2: ∀ (a b : F[X]), f = a * b → is_unit a ∨ is_unit b
{ intros a b h1,
sorry,},
},
-- f.degree = 3 case
{sorry},
end
any suggestion?
Ruben Van de Velde (Mar 22 2022 at 17:06):
What's the pen and paper proof you're formalising?
Ruben Van de Velde (Mar 22 2022 at 17:07):
The first one I've found online assumes f is reducible and derives a contradiction; you can use the by_contra tactic for that
Last updated: Dec 20 2023 at 11:08 UTC