Zulip Chat Archive

Stream: new members

Topic: limits


BANGJI HU (Oct 21 2024 at 11:39):

import Mathlib.Tactic
import Mathlib.Data.Real.Sqrt

def sLim (x :   ) (a : ) : Prop :=
   ε, 0 < ε   N,  n, N  n  |x n - a| < ε

notation "limₙ " => sLim

lemma sLim_def (x :   ) (a : ) : limₙ x a   ε, 0 < ε   N,  n, N  n  |x n - a| < ε:= by rfl

lemma sLim_const (b : ) : limₙ (fun _ => b) b :=
by
rw [sLim_def]
intros ε 
exists 0
intros n hn
ring_nf
simp only [abs_zero]
assumption
theorem sLim_mul_const_nonneg (hx : limₙ x a) (b : ) (hb : 0  b) : limₙ (fun n => x n * b) (a * b) :=
by
  by_cases hbp : b = 0
    convert sLim_const 0
    rw [hbp]
    simp only [mul_zero]

BANGJI HU (Oct 21 2024 at 11:40):

can you tell me what to do at the case b=0


Last updated: May 02 2025 at 03:31 UTC