Zulip Chat Archive
Stream: new members
Topic: mono f
Antoine Labelle (Dec 03 2020 at 21:01):
import tactic
import algebra.algebra.basic
import linear_algebra.direct_sum_module
import category_theory.simple
import algebra.category.Module.abelian
open category_theory
open_locale direct_sum
universes v u
variables {k : Type} [field k] {A : Type} [ring A] [algebra k A]
variables {I : Type} {finI : fintype I}
variables {V : I → Module.{v} A} [∀i:I, simple (V i)] {m : I → ℕ}
variables {W : Module.{v} A} {f : W → (⨁ i, (⨁ i': fin (m i), V i))} [mono f]
Does someone see why [mono f]
yields an error?
Reid Barton (Dec 03 2020 at 21:19):
f
would need to use the "long arrow" \hom
, but then I don't know what the right way to write the direct sums is.
Antoine Labelle (Dec 04 2020 at 03:21):
Hum, is there a way to convert modules as types with instance of [module A M] to modules as elements of the category of modules?
Antoine Labelle (Dec 04 2020 at 03:22):
If so I could just apply it to the direct sum
Adam Topaz (Dec 04 2020 at 03:53):
Antoine Labelle (Dec 04 2020 at 15:43):
So def V' := Module.of A (⨁ i, (⨁ i': fin (m i), V i))
give the error
failed to synthesize type class instance for
A : Type u,
_inst_2 : ring A,
I : Type,
V : I → Module A,
_inst_4 : Π (i : I), simple (V i),
m : I → ℕ
⊢ add_comm_group (⨁ (i : I) (i' : fin (m i)), ↥(V i))
However if I do
def V' := (⨁ i, (⨁ i': fin (m i), V i))
#check [add_comm_group V']
everything is fine. What is the problem here?
Eric Wieser (Dec 04 2020 at 15:49):
#check [add_comm_group V']
is showing you information about a term of type list Type
Eric Wieser (Dec 04 2020 at 15:49):
You want #check (infer_instance : add_comm_group V')
Eric Wieser (Dec 04 2020 at 15:50):
Ie "show me a thing that is a term of type add_comm_group V'
" instead of just "show me the type add_comm_group V'
"
Eric Wieser (Dec 04 2020 at 15:50):
(and []
in that context creates a list)
Antoine Labelle (Dec 04 2020 at 15:53):
#check (infer_instance : add_comm_group V')
doesn't yield errors but this doesn't solve my problem for converting to Module A
Last updated: Dec 20 2023 at 11:08 UTC