Zulip Chat Archive

Stream: new members

Topic: multiplication of complex number


Artizuiala G. (Mar 20 2022 at 20:51):

I'm trying to prove the multiplication law of complex number before I use it to proving other things.
for example, I have two complex number, x = a + bi, y = c + di, and w.t.s x * y = (ac - bd) + i (ad + bc).
sor far, I tried:

example :  (x y : ), ( (a b : ), x = a + complex.I * b)  ( (c d : ), y = c + complex.I * d)  ( (e f : ), x * y = e + complex.I * f) :=
begin
  intros x y,
  intros hx hy,
  obtain a, b, hx := hx,
  obtain c, d, hy := hy,
  -- w.t.s x * y = (a * c - b * d) + complex.I * (a * d + b * c)
  use a * c - b * d, -- x = ↑a + complex.I * ↑b
  use a * d + b * c, -- y = ↑c + complex.I * ↑d
  have hxy : x * y = (a + complex.I * b) * (c + complex.I * d),
     exact congr (congr_arg has_mul.mul hx) hy,
  have h3 : (x * y).re = (x.re) * y.re - (x.im) * y.im,
       exact complex.mul_re x y,
  have h4 : (x * y).im = (x.re) * y.im + (x.im) * y.re,
       exact complex.mul_im x y,
  -- have h5 : x.re = a,
  sorry,
end

I have no idea how to do next, any suggestions?


Last updated: Dec 20 2023 at 11:08 UTC