Zulip Chat Archive
Stream: new members
Topic: n % 2 = 1
Huỳnh Trần Khanh (Feb 09 2021 at 02:29):
How do I prove this?
example { n : ℕ } (h : ¬(n % 2 = 0)) : n % 2 = 1 := begin
sorry,
end
Bryan Gin-ge Chen (Feb 09 2021 at 02:35):
import data.nat.parity
example { n : ℕ } (h : ¬(n % 2 = 0)) : n % 2 = 1 := begin
rwa [← nat.odd_iff, nat.odd_iff_not_even, nat.even_iff],
end
Mario Carneiro (Feb 09 2021 at 02:46):
example {n : ℕ} (h : ¬(n % 2 = 0)) : n % 2 = 1 :=
(nat.mod_two_eq_zero_or_one _).resolve_left h
Mario Carneiro (Feb 09 2021 at 02:46):
that doesn't even need imports, the lemma is in core
Mario Carneiro (Feb 09 2021 at 02:47):
(although I highly doubt it needs to be)
Huỳnh Trần Khanh (Feb 09 2021 at 03:44):
Thanks! I just completed the CSES Counting Bits proof thanks to your help. In a minute or two I'll post a proof review request!
Last updated: Dec 20 2023 at 11:08 UTC