Zulip Chat Archive
Stream: new members
Topic: noob question about cardinal
Kenny Lau (Sep 13 2018 at 09:04):
import set_theory.cardinal example (α : Type*) (S T : set α) (HS : set.finite S) (HT : set.finite T) (H : finset.card (set.finite.to_finset HS) ≤ finset.card (set.finite.to_finset HT)) : cardinal.mk S ≤ cardinal.mk T := sorry
Chris Hughes (Sep 13 2018 at 09:41):
open cardinal example (α : Type*) (S T : set α) (HS : set.finite S) (HT : set.finite T) (H : finset.card (set.finite.to_finset HS) ≤ finset.card (set.finite.to_finset HT)) : cardinal.mk S ≤ cardinal.mk T := begin haveI := classical.choice HS, haveI := classical.choice HT, rwa [fintype_card S, fintype_card T, nat_cast_le, set.card_fintype_of_finset' (set.finite.to_finset HS), set.card_fintype_of_finset' (set.finite.to_finset HT)]; simp end
Kenny Lau (Sep 13 2018 at 09:43):
import set_theory.cardinal example (α : Type*) (S T : set α) (HS : set.finite S) (HT : set.finite T) (H : finset.card (set.finite.to_finset HS) ≤ finset.card (set.finite.to_finset HT)) : cardinal.mk S ≤ cardinal.mk T := begin tactic.unfreeze_local_instances, cases HS, cases HT, rw [cardinal.fintype_card, cardinal.fintype_card, cardinal.nat_cast_le], rw [← fintype.card_coe, ← fintype.card_coe] at H, convert H; { ext z, rw [finset.mem_coe, set.finite.mem_to_finset] } end
Kenny Lau (Sep 13 2018 at 09:44):
anyway why do we need so many lines
Last updated: Dec 20 2023 at 11:08 UTC