Zulip Chat Archive

Stream: new members

Topic: tensor of non-commutative ring


Chengyan Hu (Aug 20 2025 at 15:06):

Hi! I found out that we don't have tensor product for modules over non-commutative ring in lean, I tried several ways to deal with that but still found no idea. The issue occurs in the last line of the code.
I tried to use tensor product of representation, but that's still only appliable for commutative ring.

import Mathlib
open Field
open scoped TensorProduct

local notation "ℤ[G]" => MonoidAlgebra 
local notation "G_K" => absoluteGaloisGroup
variable ( : ) [Fact (Nat.Prime )]

structure FreyPackage where
  a : 
  b : 
  c : 
  ha0 : a  0
  hb0 : b  0
  hc0 : c  0
  p : 
  pp : Nat.Prime p
  hp5 : 5  p
  hFLT : a ^ p + b ^ p = c ^ p
  hgcdab : gcd a b = 1 -- same as saying a,b,c pairwise coprime
  ha4 : (a : ZMod 4) = 3
  hb2 : (b : ZMod 2) = 0

namespace FreyPackage

def IsBadReduction (C : WeierstrassCurve ) (p : ) [Fact (Nat.Prime p)] :Prop:= sorry
def FreyCurveSimple (P : FreyPackage) : WeierstrassCurve  := sorry

abbrev E_pclosure (C : WeierstrassCurve ) (p : ) [Fact (Nat.Prime p)] : Type :=
  (C.map (algebraMap  (AlgebraicClosure ℚ_[p])) ).toAffine.Point

noncomputable instance CommGroupstructure (C : WeierstrassCurve ) :
 AddCommGroup (E_pclosure C ):= by classical infer_instance

noncomputable instance Modulestructue (C : WeierstrassCurve ) :
Module ([G] (G_K ℚ_[])) (E_pclosure C ) := sorry

abbrev G (q : IsLocalRing.maximalIdeal ℤ_[]) (hq : (q : ℚ_[])  0) :
 Type := Additive (ℚ_[]ˣ⧸(Subgroup.closure ({Units.mk0 (q: ℚ_[]) hq})))

noncomputable instance AddCommMonoid
(q : IsLocalRing.maximalIdeal ℤ_[]) (hq : (q : ℚ_[])  0) : AddCommMonoid (G  q hq)
:= by infer_instance

noncomputable instance Modulestructue1
(q : IsLocalRing.maximalIdeal ℤ_[]) (hq : (q : ℚ_[])  0) :
Module ([G] (G_K ℚ_[])) (G  q hq) := sorry

theorem Tate (P : FreyPackage) (p : ) [Fact (Nat.Prime p)] : IsBadReduction (FreyCurveSimple P) p
  (δ : Representation  (G_K ℚ_[p]) (Additive ˣ)),  (q : IsLocalRing.maximalIdeal ℤ_[p]) (hq : (q : ℚ_[p])  0),
Nonempty ((E_pclosure (FreyCurveSimple P) p) ≃ₗ[[G] (G_K ℚ_[p])] ((G p q hq)[[G] (G_K ℚ_[p])] δ.asModule)) := sorry

Eric Wieser (Aug 20 2025 at 15:07):

To be clear, you mean A ⊗[R] B where R is non-commutative?

Chengyan Hu (Aug 20 2025 at 15:43):

yes! In particular , (G p q hq)⊗[ℤ[G] (G_K ℚ_[p])] δ.asModule)

Eric Wieser (Aug 20 2025 at 15:44):

I think #7152 is one of the blockers here

Chengyan Hu (Aug 20 2025 at 15:44):

let me have a look

Chengyan Hu (Aug 20 2025 at 15:59):

yes I finished reading this, and the explain make sense for me. However I still have no idea how to solve my specific problem.

Chengyan Hu (Aug 20 2025 at 16:02):

I just realized this is a much bigger problem than I thought


Last updated: Dec 20 2025 at 21:32 UTC