Zulip Chat Archive
Stream: new members
Topic: topological_fiber_bundle_core
Nicolò Cavalleri (Jun 15 2021 at 21:54):
@Sebastien Gouezel I am playing with your construction topological_fiber_bundle_core
and I cannot finish to prove this lemma to be put at the end of topological_fiber_bundle.lean
:
section -- to be put somewhere else where there is no `include Z`
@[continuity] lemma _root_.continuous.prod.mk {α : Type*} {β : Type*} [topological_space α]
[topological_space β] (a : α) : continuous (prod.mk a : β → α × β) :=
continuous_const.prod_mk continuous_id'
end
lemma continuous_sigma_mk (b : B) : @continuous _ _ _ (Z.to_topological_space ι) -- why does it found the sigma topology instead?
(λ a, (⟨b, a⟩ : (bundle.total_space Z.fiber))) :=
begin
rw continuous_iff_le_induced,
unfold topological_fiber_bundle_core.to_topological_space,
rw induced_generate_from_eq,
apply le_generate_from,
simp only [mem_image, exists_prop, mem_Union, mem_singleton_iff], --lemma
intros s hs,
rcases hs with ⟨_, ⟨i, t, ht, rfl⟩, rfl⟩,
simp only [preimage_inter],
refine is_open.inter _ _,
{
sorry, -- there is not enough API for the generated topology... do I need to write it?
},
{
rw ←preimage_comp,
simp only [function.comp, local_triv'_apply],
rw preimage_comp,
have : continuous (λ (x : Z.fiber b), (Z.coord_change (Z.index_at b) i b) x) :=
by {
rw continuous_iff_continuous_on_univ,
refine ((Z.coord_change_continuous (Z.index_at b) i).comp ((continuous_const).prod_mk
continuous_id).continuous_on) (by {
convert (subset_univ univ),
simp only [id.def],
sorry, --this is false, but still it feels like the natural proof...
})},
exact (this).is_open_preimage _ ((continuous.prod.mk b).is_open_preimage t ht),
},
end
can you prove it yourself from scratch / give me some hints / find out why my proof is wrong?
Last updated: Dec 20 2023 at 11:08 UTC